Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Giải phương trình $(6+\sqrt{5})^x-(6-\sqrt{5})^x=2\sqrt{5}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Katyusha

Katyusha

    Sĩ quan

  • Thành viên
  • 460 Bài viết
  • Giới tính:Nam

Đã gửi 06-12-2017 - 06:12

Giải phương trình $(6+\sqrt{5})^x-(6-\sqrt{5})^x=2\sqrt{5}$

 

Mình đoán được 1 nghiệm $x=1$ nhưng làm sao để chứng minh nó là nghiệm duy nhất?



#2 NAT

NAT

    Thượng sĩ

  • Thành viên
  • 201 Bài viết
  • Giới tính:Nam
  • Đến từ:Bạc Liêu

Đã gửi 06-12-2017 - 10:51

Giải phương trình $(6+\sqrt{5})^x-(6-\sqrt{5})^x=2\sqrt{5}$

 

Mình đoán được 1 nghiệm $x=1$ nhưng làm sao để chứng minh nó là nghiệm duy nhất?

Xét 2 trường hợp:

- TH $x \le 0$: $(6+\sqrt{5})^x-(6-\sqrt{5})^x-2\sqrt{5}<0$

- TH $x>0$: Xét $f(x)=(6+\sqrt{5})^x-(6-\sqrt{5})^x-2\sqrt{5}$. Hàm số này đồng biến trên khoảng $(0;+\infty )$



#3 Katyusha

Katyusha

    Sĩ quan

  • Thành viên
  • 460 Bài viết
  • Giới tính:Nam

Đã gửi 06-12-2017 - 22:24

Xét 2 trường hợp:

- TH $x \le 0$: $(6+\sqrt{5})^x-(6-\sqrt{5})^x-2\sqrt{5}<0$

- TH $x>0$: Xét $f(x)=(6+\sqrt{5})^x-(6-\sqrt{5})^x-2\sqrt{5}$. Hàm số này đồng biến trên khoảng $(0;+\infty )$

Bạn cho mình hỏi là TH $x>0$ để chứng minh hàm đồng biến có phải xét đạo hàm không, với lại khi đạo hàm được $f'(x)=(6+\sqrt{5})^x\ln (6+\sqrt{5})-(6-\sqrt{5})^x\ln (6-\sqrt{5})$, chứng minh $f'(x)>0$ thế nào vậy bạn?



#4 NAT

NAT

    Thượng sĩ

  • Thành viên
  • 201 Bài viết
  • Giới tính:Nam
  • Đến từ:Bạc Liêu

Đã gửi 06-12-2017 - 22:32

Bạn cho mình hỏi là TH $x>0$ để chứng minh hàm đồng biến có phải xét đạo hàm không, với lại khi đạo hàm được $f'(x)=(6+\sqrt{5})^x\ln (6+\sqrt{5})-(6-\sqrt{5})^x\ln (6-\sqrt{5})$, chứng minh $f'(x)>0$ thế nào vậy bạn?

Với $x>0$, ta có: $(6+\sqrt{5})^x>(6-\sqrt{5})^x$ và $\ln (6+\sqrt{5} )>\ln (6-\sqrt{5})$ nên $f'(x)>0$






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh