Đến nội dung


Thông báo


Thời gian vừa qua chức năng nhập mã an toàn lúc đăng kí thành viên của diễn đàn đã hoạt động không ổn định, do đó có nhiều bạn đã không thể đăng kí thành viên. Hiện nay vấn đề này đã được giải quyết. Ban Quản Trị chân thành xin lỗi những thành viên đã gặp trục trặc lúc đăng kí.


Hình ảnh

$f(x,y)$ liên tục trên $D \subset \mathbb{R}^2$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 perfectstrong

perfectstrong

    $LOVE(x)|_{x =\alpha}^\Omega=+\infty$

  • Quản trị
  • 4107 Bài viết
  • Giới tính:Nam
  • Sở thích:Đàn guitar, ngắm người mình yêu, học toán

Đã gửi 08-12-2017 - 02:05

(Sáng tác)

Cho $D \subset \mathbb{R}^2$ là một miền liên tục (tức với mọi cặp điểm $A, B$ trong $D$, kể cả biên giới, thì luôn tồn tại một đường đi "liền nét" từ $A$ tới $B$ sao cho đường đi không cắt ra ngoài $D$.)

Định nghĩa $f: D \rightarrow \mathbb{R}$ như sau: Vẽ một đường tròn có tâm $(x,y)$ và bán kính $f(x,y)$ sao cho đường tròn lớn nhất có thể có và tiếp xúc với viền của $D$.

Chứng minh rằng $f(x,y)$ liên tục.


Luôn yêu để sống, luôn sống để học toán, luôn học toán để yêu!!! :D

$$\text{LOVE}\left( x \right)|_{x = \alpha}^\Omega = + \infty $$




I'm still there everywhere.

#2 Minhnksc

Minhnksc

    Thượng sĩ

  • Điều hành viên OLYMPIC
  • 286 Bài viết
  • Giới tính:Nam
  • Đến từ:$\text{11T1 THPT Chuyên}$ $\boxed{\text{ LHP - Nam Định}}$
  • Sở thích:Convex Analysis :V

Đã gửi 12-12-2017 - 21:20

Gọi hai điểm có tọa độ $(x;y)$ và $(x_0;y_0)$ lần lượt là $A$ và $B$; đặt $\delta =AB$

Ta sẽ chứng minh $lim_{\delta\rightarrow 0}f(x;y)=f(x_0;y_0)(1)$

Với mọi $\epsilon>0$; ta chọn một số $a$ sao cho $a<min\left\{\epsilon;f(x_0;y_0)\right\}$

ta dựng được đường tròn $(C_1)$ và $(C_2)$ tiếp xúc với $D$ nhận lần lượt $A$ và $B$ làm tâm

 Chọn $A$ sao cho $AB\le a<f(x_0;y_0)\Rightarrow A\in (C_2)$; khi đó $(C_1)$ và $(C_2)$ phải có điểm chung (gọi là $C$)

Thật vậy nếu $(C_1)$ và $(C_2)$ không có điểm chung thì do tâm của $(C_1)$ nằm trong $(C_2)$ nên $(C_2)$ phải chứa $(C_1)$ 

từ đây suy ra tồn tại điểm thuộc $D$ mà nằm trong $(C_2)$ là điểm tiếp xúc giữa $(C_1)$ và $D$ (mâu thuẫn với $(C_2)$ tiếp xúc $D$)

Ta có $|f(x;y)-f(x_0;y_0)|=|AC-BC|\le AB=a<\epsilon$

hay với mọi số thực $\epsilon$; luôn tồn tại số thực $a$ sao cho với mọi $(x;y)$ thỏa $\delta\le a$ thì $|f(x;y)-f(x_0;y_0)|<\epsilon$ nên ta suy ra $(1)$ và từ đó ta có hàm f liên tục


Bài viết đã được chỉnh sửa nội dung bởi Minhnksc: 12-12-2017 - 21:35

  :D :D  :D 

“Nhà khoa học không nghiên cứu tự nhiên vì việc đó có ích; Anh ta nghiên cứu nó vì anh ta thấy thích thú và anh ta thấy thích thú vì nó đẹp. Nếu tự nhiên không đẹp thì nó không đáng để biết, và cuộc sống không đáng để sống” :D  :D  :D 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh