Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Một số câu hình vận dụng đề thi Toán học kì 1 tỉnh Quảng Nam 2017-2018


  • Please log in to reply
Chủ đề này có 14 trả lời

#1 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 17:25

1. Cho hình trụ có trục $OO'$ và có chiều cao bằng hai lần bán kính đáy. Trên hai đường tròn đáy $(O)$ và $(O')$ lần lượt lấy hai điểm $A$ và $B$ sao cho $OA \perp O'B$ Gọi $\alpha$ là góc giữa $AB$ và trục $OO'$ của hình trụ. Tính $tan\alpha$

A. $\tan\alpha =\frac{\sqrt{2}}{2}$

B. $\tan\alpha =\frac{1}{2}$

C. $\tan\alpha =\sqrt{2}$

D. $\tan\alpha =2$

 

2. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật. Một mặt phẳng không qua $S$ và song song với mặt phẳng $(ABCD)$ cắt các cạnh bên $SA, SB, SC, SD$ lần lượt tại $M, N, P, Q$. Gọi $M'$, $N'$, $P'$, $Q'$ lần lượt là hình chiếu vuông góc của $M$, $N$, $P$, $Q$ trên mặt phẳng $(ABCD)$. Đặt $\frac{SM}{SA}=k$ Tìm $k$ để khối lăng trụ $MNPQ. M'N'P'Q'$ có thể tích lớn nhất.

A. $k=\frac{1}{2}$

B. $k=\frac{3}{4}$

C. $k=\frac{2}{3}$

D. $k=\frac{1}{3}$

 

3. Cho hình nón có đỉnh $S$, đáy là hình tròn tâm $O$ bán kính $2a$ và độ dài đường sinh bằng $a\sqrt{5}$. Mặt phẳng $(P)$ cắt hình nón theo thiết diện là tam giác có chu vi bằng $2(1+\sqrt{5})a$ Tính khoảng cách $d$ từ $O$ đến mặt phẳng $(P)$.

A. $d=\frac{a\sqrt{3}}{3}$

B. $d=\frac{a\sqrt{3}}{2}$

C. $d=\frac{a}{2}$

D. $d=\frac{a\sqrt{3}}{\sqrt{7}}$


Bài viết đã được chỉnh sửa nội dung bởi Chika Mayona: 05-01-2018 - 21:45

Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#2 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 05-01-2018 - 19:57

 

3. Cho hình nón có đỉnh $S$, đáy là hình tròn tâm $O$ bán kính $2a$ và độ dài đường sinh bằng $a\sqrt{5}$. Mặt phẳng $(P)$ cắt hình nón theo thiết diện là tam giác có chu vi bằng $2(1+\sqrt{5})a$ Tính khoảng cách $d$ từ $O$ đến mặt phẳng $(P)$.

A. $d=\frac{a\sqrt{3}}{3}$

B. $d=\frac{a\sqrt{3}}{2}$

C. $d=\frac{a}{2}$

D. $d=\frac{a\sqrt{3}}{\sqrt{7}}$

 

Tính đc cạnh $(a)$ còn lại của thiết diện là $2$

Tính đc chiều cao là $h=1$

Tính đc khoảng cách từ $O$ đến $(a)$ là: $d(O;a)=\sqrt{3}$

$\rightarrow d(O;(P))=\dfrac{1\sqrt{3}}{\sqrt{3+1}}=\dfrac{\sqrt{3}}{2}$

Vậy kc cần tìm: $d=\dfrac{a\sqrt{3}}{2}$

 

 

1. Cho hình trụ có trục $OO'$ và có chiều cao bằng hai lần bán kính đáy. Trên hai đường tròn đáy $(O)$ và $(O')$ lần lượt lấy hai điểm $A$ và $B$ sao cho $OA \perp O'B$ Gọi $\alpha$ là góc giữa $AB$ và trục $OO'$ của hình trụ. Tính $tan\alpha$

A. $\tan\alpha =\frac{\sqrt{2}}{2}$

B. $\tan\alpha =\frac{1}{2}$

C. $\tan\alpha =\sqrt{2}$

D. $\tan\alpha =2$

 

Trên $(O')$ lấy $K$ sao cho $OO'AK$ là hình chữ nhật

Kẻ đường thẳng vuông góc $O'K$ cắt đtron tại $B$

Góc $\alpha$ là góc $\angle BAK$

Tính đc: $BK=R\sqrt{2}; AK=2R$

$\rightarrow \tan \alpha=\dfrac{\sqrt{2}}{2}$


Bài viết đã được chỉnh sửa nội dung bởi leminhnghiatt: 05-01-2018 - 20:11

Don't care


#3 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 05-01-2018 - 20:16

2. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật. Một mặt phẳng không qua $S$ và song song với mặt phẳng $(ABCD)$ cắt các cạnh bên $SA, SB, SC, SD$ lần lượt tại $M, N, P, Q$ trên mặt phẳng $(ABCD)$. Đặt $\frac{SM}{SA}=k$ Tìm $k$ để khối lăng trụ $MNPQ. M'N'P'Q'$ có thể tích lớn nhất.

A. $k=\frac{1}{2}$

B. $k=\frac{3}{4}$

C. $k=\frac{2}{3}$

D. $k=\frac{1}{3}$

 

Câu 2 hình như thiếu dữ kiện r Châu


Don't care


#4 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 21:47

Câu 2 hình như thiếu dữ kiện r Châu

Ừ cậu, mình nhìn vội quá nên ghi thiếu đề.

Đề chuẩn sửa lại là thế này

 

 

2. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật. Một mặt phẳng không qua $S$ và song song với mặt phẳng $(ABCD)$ cắt các cạnh bên $SA, SB, SC, SD$ lần lượt tại $M, N, P, Q$. Gọi $M'$, $N'$, $P'$, $Q'$ lần lượt là hình chiếu vuông góc của $M$, $N$, $P$, $Q$ trên mặt phẳng $(ABCD)$. Đặt $\frac{SM}{SA}=k$ Tìm $k$ để khối lăng trụ $MNPQ. M'N'P'Q'$ có thể tích lớn nhất.

A. $k=\frac{1}{2}$

B. $k=\frac{3}{4}$

C. $k=\frac{2}{3}$

D. $k=\frac{1}{3}$

 

Giúp mình nhé ~~ Câu này mình dùng Casio random mà nó vẫn đúng ~~ Nên chẳng biết làm ~~


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#5 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 22:05

 

Trên $(O')$ lấy $K$ sao cho $OO'AK$ là hình chữ nhật

Kẻ đường thẳng vuông góc $O'K$ cắt đtron tại $B$

Góc $\alpha$ là góc $\angle BAK$

Tính đc: $BK=R\sqrt{2}; AK=2R$

$\rightarrow \tan \alpha=\dfrac{\sqrt{2}}{2}$

Mà Nghĩa ơi, cái câu 2 này thì vẽ hình kiểu gì để hình dung ra. 

Giả sử mình đặt A ở đây thì điểm B ở đâu mới ra vuông góc @@ 

P/s: Bài này mình vẽ hình ko ra ~~

2018-01-05_220404.png


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#6 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 05-01-2018 - 22:48

Mà Nghĩa ơi, cái câu 2 này thì vẽ hình kiểu gì để hình dung ra. 

Giả sử mình đặt A ở đây thì điểm B ở đâu mới ra vuông góc @@ 

P/s: Bài này mình vẽ hình ko ra ~~

2018-01-05_220404.png

 

Ở trên mp $(O')$ c kẻ $OB' \perp$ với cái trục kia là $\perp OA$ rồi vì khi kẻ nt nó vuông góc với mp chứ $OA$


Don't care


#7 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 23:00

Ở trên mp $(O')$ c kẻ $OB' \perp$ với cái trục kia là $\perp OA$ rồi vì khi kẻ nt nó vuông góc với mp chứ $OA$

Vậy là vẽ thế này đúng ko?? 

2018-01-05_225844.png

Nhưng nếu vẽ thế này thì vẽ đường thẳng vuông góc với $O'K$ cắt đường tròn tại $B$ như thế nào @@


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#8 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 05-01-2018 - 23:13

Vậy là vẽ thế này đúng ko?? 

2018-01-05_225844.png

Nhưng nếu vẽ thế này thì vẽ đường thẳng vuông góc với $O'K$ cắt đường tròn tại $B$ như thế nào @@

C vẽ đúng r đó, cắt đường tròn $(O')$ tại $B$ rồi


Don't care


#9 dthao17

dthao17

    Lính mới

  • Thành viên mới
  • 5 Bài viết

Đã gửi 05-01-2018 - 23:14

Tính đc cạnh $(a)$ còn lại của thiết diện là $2$

Tính đc chiều cao là $h=1$

Tính đc khoảng cách từ $O$ đến $(a)$ là: $d(O;a)=\sqrt{3}$

$\rightarrow d(O;(P))=\dfrac{1\sqrt{3}}{\sqrt{3+1}}=\dfrac{\sqrt{3}}{2}$

Vậy kc cần tìm: $d=\dfrac{a\sqrt{3}}{2}$

 

 

Trên $(O')$ lấy $K$ sao cho $OO'AK$ là hình chữ nhật

Kẻ đường thẳng vuông góc $O'K$ cắt đtron tại $B$

Góc $\alpha$ là góc $\angle BAK$

Tính đc: $BK=R\sqrt{2}; AK=2R$

$\rightarrow \tan \alpha=\dfrac{\sqrt{2}}{2}$

bạn vẽ hình câu 1 ra xem đi... t k vẽ được



#10 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 23:32

bạn vẽ hình câu 1 ra xem đi... t k vẽ được

Câu 1?? Cái hình của mình nó đủ lớn để bạn thấy mà nhỉ ....


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#11 dthao17

dthao17

    Lính mới

  • Thành viên mới
  • 5 Bài viết

Đã gửi 05-01-2018 - 23:46

Câu 1?? Cái hình của mình nó đủ lớn để bạn thấy mà nhỉ ....

lúc nay treo k để ý là bạn tl rồi. xin lỗi



#12 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 05-01-2018 - 23:50

2. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật. Một mặt phẳng không qua $S$ và song song với mặt phẳng $(ABCD)$ cắt các cạnh bên $SA, SB, SC, SD$ lần lượt tại $M, N, P, Q$. Gọi $M'$, $N'$, $P'$, $Q'$ lần lượt là hình chiếu vuông góc của $M$, $N$, $P$, $Q$ trên mặt phẳng $(ABCD)$. Đặt $\frac{SM}{SA}=k$ Tìm $k$ để khối lăng trụ $MNPQ. M'N'P'Q'$ có thể tích lớn nhất.

A. $k=\frac{1}{2}$

B. $k=\frac{3}{4}$

C. $k=\frac{2}{3}$

D. $k=\frac{1}{3}$

 

Ta thấy: $MNPQ \sim ABCD$ theo tỉ số $k$ nên $S_{MNPQ}=k^2S_{ABCD}$

Khoảng cách từ $N$ đến $(ABCD)$ bằng $\dfrac{BN}{BS}=1-k$ lần khoảng cách từ $S$ đến $(ABCD)$

 

Nên hàm theo thể tích lăng trụ có thể là: $y=k^2(1-k)$

Xét $y'=2k-3k^2 \rightarrow y'=0 \rightarrow k=\dfrac{2}{3}$


Don't care


#13 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 23:51

lúc nay treo k để ý là bạn tl rồi. xin lỗi

Ko có gì ạ. Mà chắc bạn cũng là học sinh Quảng Nam. Bạn cho mình xin cái đề tính k mà kết quả là $k=3/2$ ấy. 


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#14 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 05-01-2018 - 23:52

Ta thấy: $MNPQ \sim ABCD$ theo tỉ số $k$ nên $S_{MNPQ}=k^2S_{ABCD}$

Khoảng cách từ $N$ đến $(ABCD)$ bằng $\dfrac{BN}{BS}=1-k$ lần khoảng cách từ $S$ đến $(ABCD)$

 

Nên hàm theo thể tích lăng trụ có thể là: $y=k^2(1-k)$

Xét $y'=2k-3k^2 \rightarrow y'=0 \rightarrow k=\dfrac{2}{3}$

Hic. Ngay dòng đầu tiên mình ko hiểu luôn. Làm sao ra đc $k^2$ vậy??


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#15 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 05-01-2018 - 23:58

Hic. Ngay dòng đầu tiên mình ko hiểu luôn. Làm sao ra đc $k^2$ vậy??

Tỉ số diện tích bằng bình phương tỉ số đồng dạng đấy Châu


Bài viết đã được chỉnh sửa nội dung bởi leminhnghiatt: 05-01-2018 - 23:58

Don't care





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh