Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

[Olympic Sinh viên] Đề thi chọn đội tuyển Giải tích - ĐH Bách Khoa TPHCM, 2017 - 2018

giải tích olympic sinh viên

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 hoangvipmessi97

hoangvipmessi97

    Lính mới

  • Thành viên mới
  • 8 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu

Đã gửi 21-01-2018 - 14:10

Ngày thi 21/01/2018
Thời gian 90 phút
Câu 1: Với giá trị $x \in \mathbb{R}$ nào thì giới hạn $\displaystyle \lim_{n \rightarrow \infty} \prod_{k=1}^{n} \left ( 1+ x^{3^k} + x^{2.3^k} \right )$ tồn tại hữu hạn?

 

Câu 2: Cho hàm số $f(x)$ xác định trên $[1; + \infty)$ thoả mãn các điều kiện sau:

           i) $f(1)=a>0$

           ii) $f(x+1)=2001(f(x))^2 + f(x), \ \forall x \in [1; + \infty)$

Tìm $\displaystyle \lim_{n \rightarrow \infty} \left [ \dfrac{f(1)}{f(2)} + \dfrac{f(2)}{f(3)} + ... + \dfrac{f(n)}{f(n+1)} \right ]$

 

Câu 3: Cho hàm $f(x)$ xác định và liên tục trên $[0; + \infty)$, có đạo hàm liên tục trên $(0; + \infty)$ và thoả mãn $f(0)=1; \ \left | f(x) \right | \leq e^{-x}, \forall x \geq 0$. Chứng minh rằng, tồn tại $x_0 > 0$ để $f'\left ( x_0 \right ) = -e^{-x_0}$

 

Câu 4: Một chất điểm xuất phát từ trạng thái đứng yên, chuyển động trên đường thẳng với gia tốc giảm dần. Khi đi được quãng đường $d$ nó đạt vận tốc $v$. Tìm thời gian chuyển động cực đại.

 

Câu 5: Cho $f(x)$ khả vi liên tục trên $[0;1]$; $f(0)=0; \ f(1)=1$. Chứng minh rằng với mọi $k_1,k_2>0$, $\exists x_1,x_2: \ 0 \leq x_1 \leq x_2 \leq 1$ sao cho $\displaystyle \dfrac{k_1}{f'\left ( x_1 \right )} + \dfrac{k_2}{f'\left ( x_2 \right )} = k_1 + k_2$.

 

Câu 6: Cho $f(x)$ khả vi trên $(a,b)$; $f(a)=0$ và tồn tại $A \geq 0; \ \alpha \geq 1$ sao cho $\left | f'(x) \right | \leq A \left | f(x) \right |^{\alpha}, \ \forall x \in [a,b]$. Chứng minh rằng $f(x) \equiv 0$ trên $[a,b]$.

 

Câu 7: Cho đa thức $P(x)$ thoả mãn điều kiện $P(a) = P(b) = 0$ với $a<b$. Đặt $\displaystyle M = \max_{a \leq x \leq b} \left | P''(x) \right |$. Chứng minh rằng $\displaystyle \left |\int_{a}^{b} P(x) dx  \right | \leq \dfrac{1}{12}M(b-a)^3$.

 

Câu 8: Cho $f(x)$ là hàm liên tục trên $[0;2]$, có đạo hàm trên $(0;2)$ và thoả mãn $f(0)=f(2)=1, \ \left | f'(x) \right | \leq 1, \ \forall x \in [0;2]$. Chứng minh rằng $\displaystyle \int_{0}^{2} f(x) dx  >1$.

 

Câu 9: Xét đa thức $P(x)$ với hệ số thực thoả mãn điều kiện $P(0) = P(1) = 0; \ \displaystyle \int_{0}^{1} \left | P(x) \right | dx = 1$. Chứng minh rằng $\left | P(x) \right | \leq \dfrac{1}{2}, \ \forall x \in [0;1]$.

 

Câu 10: Cho $f(x)$ là hàm có đạo hàm liên tục trên $[0;1]$ thoả $f(1)-f(0)=1$. Chứng minh rằng $\displaystyle \int_{0}^{1} (f'(x))^2 dx \geq 1$.

- HẾT -

 

Hình gửi kèm

  • 26815564_967513883400258_6199300050694360801_n.jpg

Bài viết đã được chỉnh sửa nội dung bởi hoangvipmessi97: 21-01-2018 - 15:16


#2 anhquannbk

anhquannbk

    Sĩ quan

  • Thành viên
  • 477 Bài viết
  • Giới tính:Nam
  • Đến từ:$\textrm{ K17-FIT-HCMUS}$
  • Sở thích:$ \textrm{GEOMETRY} $, $ \textrm{Central Intelligence Agency}$

Đã gửi 21-01-2018 - 16:17

KHTN cũng mới thi lúc sáng :))



#3 tastore

tastore

    Lính mới

  • Thành viên mới
  • 1 Bài viết
  • Giới tính:Nam

Đã gửi 16-03-2018 - 13:17

khó quá







0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh