Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$f(x+f(y))=f(x)-y\,\forall x,\,y$

pth namcpnh

  • Please log in to reply
Chủ đề này có 4 trả lời

#1 namcpnh

namcpnh

    Red Devil

  • Hiệp sỹ
  • 1153 Bài viết
  • Giới tính:Nam
  • Đến từ:Ho Chi Minh University of Science
  • Sở thích:Abstract and Applied Analysis

Đã gửi 28-01-2018 - 21:02

Có tồn tại hay không hàm số $f:\mathbb{Z}\rightarrow\mathbb{Z}$ thỏa mãn:
$$f(x+f(y))=f(x)-y\,\forall x,\,y$$

Cùng chung sức làm chuyên đề hay cho diễn đàn tại :

Dãy số-giới hạn, Đa thức , Hình học , Phương trình hàm , PT-HPT-BPT , Số học.

Wolframalpha đây


#2 ducthai2133

ducthai2133

    Binh nhì

  • Thành viên mới
  • 19 Bài viết
  • Giới tính:Nam
  • Sở thích:Analytics,Philosophy

Đã gửi 01-02-2018 - 21:50

Giả sử hàm f thỏa mãn đề bài
Giả sử tồn tại $y_{1},y_{2}$ để $f(y_{1})=f(y_{2}) -> f(x-f(y_{1}))=f(x-f(y_{2})) -> f(x)-y_{1}=f(x)-y_{2} -> y_{1}=y_{2}$
​Do đó f đơn ánh

Thay y bởi 0 ta có: $f(x+f(0))=f(x) -> f(0)=0$
​Thay x bởi 0 ta có: $f(f(y))=-y$

từ đây $=> f(x+f(y))=f(x)+f(f(y)) -> f(x+y)=f(x)+f(y)$

(bài toán quen thuộc) nên có f(x)=ax với a là hằng số
$=> a(ay+x)=ax-y -> a^{2}=-1$ (vô lý)
​vậy k tồn tại hàm số f 


Sự quyến rũ của người phụ nữ ko đến từ vẻ đẹp của cô ấy mà đến từ đôi mắt của kẻ si tình...


#3 YoLo

YoLo

    Thượng sĩ

  • Thành viên
  • 224 Bài viết
  • Giới tính:Nam
  • Sở thích:Nothing

Đã gửi 01-02-2018 - 22:09

từ đây $=> f(x+f(y))=f(x)+f(f(y)) -> f(x+y)=f(x)+f(y)$
 

phải cm đc f là toàn ánh mới có thể thay f(y) bởi y được


"All people are nothing but tools. It doesn't matter how it done. It doesn't matter what need to be sacrificed. In this world winning is everything. As long as I win in the end. That's all that matters"    


#4 namcpnh

namcpnh

    Red Devil

  • Hiệp sỹ
  • 1153 Bài viết
  • Giới tính:Nam
  • Đến từ:Ho Chi Minh University of Science
  • Sở thích:Abstract and Applied Analysis

Đã gửi 01-02-2018 - 22:14

D

 

Giả sử hàm f thỏa mãn đề bài
Giả sử tồn tại $y_{1},y_{2}$ để $f(y_{1})=f(y_{2}) -> f(x-f(y_{1}))=f(x-f(y_{2})) -> f(x)-y_{1}=f(x)-y_{2} -> y_{1}=y_{2}$
​Do đó f đơn ánh

Thay y bởi 0 ta có: $f(x+f(0))=f(x) -> f(0)=0$
​Thay x bởi 0 ta có: $f(f(y))=-y$

từ đây $=> f(x+f(y))=f(x)+f(f(y)) -> f(x+y)=f(x)+f(y)$

(bài toán quen thuộc) nên có f(x)=ax với a là hằng số
$=> a(ay+x)=ax-y -> a^{2}=-1$ (vô lý)
​vậy k tồn tại hàm số f 

Đúng rồi :)


Cùng chung sức làm chuyên đề hay cho diễn đàn tại :

Dãy số-giới hạn, Đa thức , Hình học , Phương trình hàm , PT-HPT-BPT , Số học.

Wolframalpha đây


#5 namcpnh

namcpnh

    Red Devil

  • Hiệp sỹ
  • 1153 Bài viết
  • Giới tính:Nam
  • Đến từ:Ho Chi Minh University of Science
  • Sở thích:Abstract and Applied Analysis

Đã gửi 05-02-2018 - 21:57

phải cm đc f là toàn ánh mới có thể thay f(y) bởi y được

 

Thế $x=0$ là có toàn ánh rồi nha


Cùng chung sức làm chuyên đề hay cho diễn đàn tại :

Dãy số-giới hạn, Đa thức , Hình học , Phương trình hàm , PT-HPT-BPT , Số học.

Wolframalpha đây






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh