Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Liên tục đều của hàm nhiều biến


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Mihawkdacula

Mihawkdacula

    Binh nhất

  • Thành viên mới
  • 36 Bài viết
  • Giới tính:Nam
  • Đến từ:Cà Mau
  • Sở thích:Đọc truyện, xem anime, du lịch

Đã gửi 03-04-2018 - 10:51

Chứng minh rằng hàm số liên tục trên tập $X \subset \mathbb{R}^{n}$, khác rỗng, đóng, bị chặn thì liên tục đều trên $X$. Kết quả còn đúng không nếu bỏ một trong các giả thiết đóng hoặc bị chặn của $X$? 


:lol:


#2 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1793 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 03-04-2018 - 20:28

Chứng minh rằng hàm số liên tục trên tập $X \subset \mathbb{R}^{n}$, khác rỗng, đóng, bị chặn thì liên tục đều trên $X$. Kết quả còn đúng không nếu bỏ một trong các giả thiết đóng hoặc bị chặn của $X$? 

 

"Người ta" chứng minh kết quả cơ bản này bằng phản chứng.

Về sự cần thiết của các giả thiết, cả tính đóng , tính bị chặn đều không thể bỏ qua. Điều đó được minh họa thông qua 2 thí dụ sau:

1) Với $n=1, \, X=(0,1), f(x)=\frac{1}{x}$ không liên tục đều trên $X$.

2) Với $n=1,\, X=(0,\infty), f(x)=\sqrt{x}$ không liên tục đều trên $X$.


Đời người là một hành trình...





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh