Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$x_{n+1}=\frac{(2x_{n}+1)^{2}}{2}+x_{n}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 badaosuotdoi

badaosuotdoi

    Binh nhất

  • Thành viên mới
  • 47 Bài viết

Đã gửi 13-04-2018 - 22:36

Cho dãy số x :  $x_{n+1}=\frac{(2x_{n}+1)^{2}}{2}+x_{n}$.Tìm $\lim\sum_{i=1}^{n}\frac{2x_{i}+1}{2x_{i+1}+1}$..


Bài viết đã được chỉnh sửa nội dung bởi Minhnksc: 30-04-2018 - 14:56


#2 githenhi512

githenhi512

    Thượng sĩ

  • Thành viên
  • 290 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Phòng

Đã gửi 12-05-2018 - 22:26

Cho dãy số x :  $x_{n+1}=\frac{(2x_{n}+1)^{2}}{2}+x_{n}$.Tìm $\lim\sum_{i=1}^{n}\frac{2x_{i}+1}{2x_{i+1}+1}$..

x1 bằng mấy vậy bạn   :)


Bài viết đã được chỉnh sửa nội dung bởi githenhi512: 12-05-2018 - 22:32

'' Ai cũng là thiên tài. Nhưng nếu bạn đánh giá một con cá qua khả năng trèo cây của nó, nó sẽ sống cả đời mà tin rằng mình thực sự thấp kém''.

Albert Einstein                               


#3 badaosuotdoi

badaosuotdoi

    Binh nhất

  • Thành viên mới
  • 47 Bài viết

Đã gửi 13-05-2018 - 20:51

x1 bằng mấy vậy bạn   :)

X1 = 1......



#4 githenhi512

githenhi512

    Thượng sĩ

  • Thành viên
  • 290 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Phòng

Đã gửi 14-05-2018 - 21:38

Ta có: $x_{n+1}-x_{n}=\frac{(2x_{n}+1)^2}{2}(1) \geq 0 \Rightarrow$ dãy tăng.

Giả sử dãy số bị chặn trên. Gọi $lim x_{n}=a\geq 1 \Rightarrow a= \frac{(2a+1)^2}{2}+a\Rightarrow a=\frac{-1}{2}$( loại)

$\Rightarrow lim x_{n}=+\propto$

Từ (1) $\Rightarrow \frac{2x_{n}+1}{2x_{n+1}+1}= \frac{2(x_{n+1}-x_{n})}{(2x_{n}+1)(2x_{n+1}+1)}= \frac{1}{2x_{n}+1}-\frac{1}{2x_{n+1}+1}$

 $\Rightarrow \lim\sum_{i=1}^{n}\frac{2x_{i}+1}{2x_{i+1}+1}=lim(\frac{1}{2x_{1}+1}-\frac{1}{2x_{n+1}+1})=\frac{1}{3}$


'' Ai cũng là thiên tài. Nhưng nếu bạn đánh giá một con cá qua khả năng trèo cây của nó, nó sẽ sống cả đời mà tin rằng mình thực sự thấp kém''.

Albert Einstein                               





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh