Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Chứng minh hàm số liên tục


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 PhamHuyen

PhamHuyen

    Lính mới

  • Thành viên mới
  • 5 Bài viết

Đã gửi 08-05-2018 - 21:33

Chứng minh 

1) f(x) liên tục tại x = 0 

2) Hàm không khả vi tại mọi điểm

Hình gửi kèm

  • CodeCogsEqn (1).gif


#2 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1795 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 08-05-2018 - 23:42

Chứng minh 

1) f(x) liên tục tại x = 0 

2) Hàm không khả vi tại mọi điểm

1) Vì $|f(x)|\le |x| \forall x\in \mathbb{R}$ nên, theo định lý kẹp, hàm số liên tục tại $0.$

 

2)

Xét tính khả vi của $f$ tại mỗi $a\in \mathbb{R}.$

 

TH1:  $a=0.$ Đặt $g(x)=\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}.$ 

 

TH2: $a\neq 0.$

Xét $\left\{x_n\right\}$ hội tụ về $a$ thỏa $ x_{2n}\in \mathbb{R}\setminus \mathbb{Q}, x_{2n+1}\in \mathbb{Q}.$

 

 

Khi đó, $g(x_{2n})=1,\, g(x_{2n+1})=0.$ Khi đó,

  $$\lim_{n\to\infty} g(x_{2n})=1\neq 0=\lim_{n\to\infty} g(x_{2n+1}).$$

Suy ra, $\lim_{x\to 0} g(x)$ không tồn tai. Do đó, $f$ không khả vi tại $a=0.$

TH2: $a\neq 0.$

Ta chứng minh $f$ không liên tục tại $a.$

 Xét $\left\{x_n\right\}$ hội tụ về $a$ thỏa $ x_{2n}\in \mathbb{R}\setminus \mathbb{Q}, x_{2n+1}\in \mathbb{Q}.$

Khi đó, $f(x_{2n})=x_{2n},\,  g(x_{2n+1})=0.$ Khi đó,

  $$\lim_{n\to\infty} f(x_{2n})=a\neq 0=\lim_{n\to\infty} f(x_{2n+1}).$$

 

 Do đó, $f$ không liên tục tại $a\neq 0.$

Suy ra, $f$ không khả vi tại $a\neq 0.$ 


Đời người là một hành trình...


#3 PhamHuyen

PhamHuyen

    Lính mới

  • Thành viên mới
  • 5 Bài viết

Đã gửi 09-05-2018 - 02:02

Em cảm ơn ạ.




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh