Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Tỉ lệ các cạnh của hình chóp cắt bởi mặt phẳng (tì số thể tích).


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Katyusha

Katyusha

    Sĩ quan

  • Thành viên
  • 460 Bài viết
  • Giới tính:Nam

Đã gửi 24-05-2018 - 07:51

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $(P)$ là mặt phẳng lần lượt cắt 4 cạnh $SA,SB,SC,SD$ tại các điểm $A',B',C',D'$.

 

Đặt $a=\frac{SA}{SA'},b=\frac{SB}{SB'},c=\frac{SC}{SC'},d=\frac{SD}{SD'}$. Chứng minh $a+c=b+d$.

 

HHKG-1.png


Bài viết đã được chỉnh sửa nội dung bởi Katyusha: 24-05-2018 - 07:52


#2 trambau

trambau

    Thiếu úy

  • Điều hành viên THPT
  • 539 Bài viết
  • Giới tính:Nữ
  • Đến từ:ABC8 (16-19) THPT Hàm Rồng- Thanh Hóa

Đã gửi 24-05-2018 - 11:05

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $(P)$ là mặt phẳng lần lượt cắt 4 cạnh $SA,SB,SC,SD$ tại các điểm $A',B',C',D'$.

 

Đặt $a=\frac{SA}{SA'},b=\frac{SB}{SB'},c=\frac{SC}{SC'},d=\frac{SD}{SD'}$. Chứng minh $a+c=b+d$.

 

 

Ta có $\overrightarrow{SA}+\overrightarrow{SC}=\overrightarrow{SB}+\overrightarrow{SD}=2\overrightarrow{SO}\Leftrightarrow a.\overrightarrow{SA'}+c\overrightarrow{SC'}=b\overrightarrow{SB'}+d\overrightarrow{SD'}$

Do  $A',B',C',D'$. đồng phẳng nên ta có đpcm


Bài viết đã được chỉnh sửa nội dung bởi trambau: 24-05-2018 - 11:08


#3 Katyusha

Katyusha

    Sĩ quan

  • Thành viên
  • 460 Bài viết
  • Giới tính:Nam

Đã gửi 24-05-2018 - 11:31

Ta có $\overrightarrow{SA}+\overrightarrow{SC}=\overrightarrow{SB}+\overrightarrow{SD}=2\overrightarrow{SO}\Leftrightarrow a.\overrightarrow{SA'}+c\overrightarrow{SC'}=b\overrightarrow{SB'}+d\overrightarrow{SD'}$

Do  $A',B',C',D'$. đồng phẳng nên ta có đpcm

Bạn cho mình hỏi vì sao $A',B',C',D'$ đồng phẳng lại suy ra điều phải chứng minh. Mình cám ơn :)






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh