Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Tìm GTLN của $2x^2-3xy-2y^2$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 dat102

dat102

    Trung sĩ

  • Thành viên
  • 150 Bài viết
  • Giới tính:Nam
  • Đến từ:Biên Hòa, Đồng Nai
  • Sở thích:Toán, Bóng đá và ... :)

Đã gửi 01-06-2018 - 23:27

Cho $2$ số thực $x,y$. Tìm GTLN của $2x^2-3xy-2y^2$ biết $25x^2-20xy+40y^2=36$

 


:ukliam2:  $\sqrt{MF}$  :ukliam2: 


#2 xuanhoan23112002

xuanhoan23112002

    Trung sĩ

  • Thành viên
  • 103 Bài viết
  • Giới tính:Không khai báo

Đã gửi 02-06-2018 - 07:23

Đặt $A=2x^2-3xy-2y^2$

$\Leftrightarrow$$A-3=2x^2-3xy-2y^2-\frac{1}{12}(25x^2-20xy+40y^2)$

$\Leftrightarrow$$A-3=-\frac{1}{12}x^2-\frac{4}{3}xy-\frac{16}{3}y^2$

$\Leftrightarrow$$A-3=-\frac{1}{12}(x+8y)^2\leq 0$

$\Leftrightarrow A\leq 3$

Đẳng thức xảy ra $\Leftrightarrow (x, y)=(\frac{4\sqrt{2}}{5}, -\frac{\sqrt{2}}{10})$ hoặc $(x, y)=(-\frac{4\sqrt{2}}{5}, \frac{\sqrt{2}}{10})$

Vậy Max của $2x^2-3xy-2y^2=3$


Bài viết đã được chỉnh sửa nội dung bởi xuanhoan23112002: 02-06-2018 - 07:27


#3 dat102

dat102

    Trung sĩ

  • Thành viên
  • 150 Bài viết
  • Giới tính:Nam
  • Đến từ:Biên Hòa, Đồng Nai
  • Sở thích:Toán, Bóng đá và ... :)

Đã gửi 02-06-2018 - 21:22

 

Đặt $A=2x^2-3xy-2y^2$

$\Leftrightarrow$$A-3=2x^2-3xy-2y^2-\frac{1}{12}(25x^2-20xy+40y^2)$

$\Leftrightarrow$$A-3=-\frac{1}{12}x^2-\frac{4}{3}xy-\frac{16}{3}y^2$

$\Leftrightarrow$$A-3=-\frac{1}{12}(x+8y)^2\leq 0$

$\Leftrightarrow A\leq 3$

Đẳng thức xảy ra $\Leftrightarrow (x, y)=(\frac{4\sqrt{2}}{5}, -\frac{\sqrt{2}}{10})$ hoặc $(x, y)=(-\frac{4\sqrt{2}}{5}, \frac{\sqrt{2}}{10})$

Vậy Max của $2x^2-3xy-2y^2=3$

 

Cho em hỏi là làm sao dự đoán được là $Max_A=3$. Anh giải thích giúp em với. Cảm ơn nhiều ạ.


:ukliam2:  $\sqrt{MF}$  :ukliam2: 


#4 xuanhoan23112002

xuanhoan23112002

    Trung sĩ

  • Thành viên
  • 103 Bài viết
  • Giới tính:Không khai báo

Đã gửi 03-06-2018 - 07:30

Ta có:

$A-36a=(2-25a)x^2-(3+20a)xy-(2-40a)y^2$

Coi phương trình trên là phương trình bậc 2 ẩn x tìm giá trị của a sao cho phương trình có nghiệm kép tức là$\Delta =0$ (Chú ý: Tìm giá trị lớn nhất thì $A-36a$ mang dấu trừ của 1 bình phương đủ nên $2-25a<0, 2-40a<0$)

Từ đó tìm được: $a=\frac{1}{12 }$


Bài viết đã được chỉnh sửa nội dung bởi xuanhoan23112002: 03-06-2018 - 07:31





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh