Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

ĐỀ THI VÀO 10 CHUYÊN TOÁN TRẦN PHÚ - HẢI PHÒNG NĂM HỌC 2018-2019

tài liệu đề thi hải phòng chuyên trần phú vào 10 2018

  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Arthur Pendragon

Arthur Pendragon

    Binh nhất

  • Thành viên mới
  • 29 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Phòng, Việt Nam

Đã gửi 17-06-2018 - 16:09

ĐỀ THI TUYỂN SINH VÀO 10 CHUYÊN TRẦN PHÚ NĂM HỌC 2018 - 2019

Câu 1:

a) Cho biểu thức $P=\frac{\sqrt{x}+1}{4-x}:\frac{1}{2\sqrt{x}-x}+\frac{1}{2-\sqrt{x}}$ với $x>0$ và $x\neq 4$.

Rút gọn biểu thức $P$. Tìm giá trị của x để $P>\frac{1}{7}$

b) Cho phương trình $x^2+6x-6m-m^2=0$(1)  (với m là tham số). Tìm giá trị của $m$ để phương trình (1) có hai nghiệm $x_1,x_2$ thỏa mãn $x_1^2=6x_1+x_2$

Câu 2:

a) Giải phương trình $\sqrt{3x-2}-\sqrt{x+1}=2x^2+x-6$

b) Giải phương trình $\left\{\begin{matrix} y^2-xy-2x^2=6(x+y)\\ (4x+1)^2=3(4y-21) \end{matrix}\right.$

Câu 3: Cho đường tròn (O) và một điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng AO cắt đường tròn (O) tại hai điểm D,E (D nằm giữa A và E). Gọi H là giao điểm của BC và AO.

a) Chứng minh D là tâm đường tròn nội tiếp tam giác ABC.

b) Trên cung nhỏ CD của đường tròn (O) lấy điểm F tùy ý (F khác C,D).Từ A kẻ đường thẳng vuông góc với lần lượt cắt FC, FE lần lượt tại M,N.

Chứng minh rằng $\frac{AB}{AE}=\frac{BD}{BE}$ và $\frac{NF}{NE}=\frac{BD^2}{BE^2}$

c) MB cắt (O) tại P (P khác B). chứng minh rằng NH song song với PD.

Câu 4:

Cho ba số dương a,b,c thỏa mãn $abc=2$. Chứng minh rằng

$a^3+b^3+c^3 \geq a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}$

Câu 5:

a) Với mỗi số nguyên dương $n$, ký hiệu $S_n=1^2+2^2+3^2+...+n^2$ .Chứng minh rằng $24(2n+3)S_n+1$  là số chính phương.

b) Đặt tùy ý 2018 tấm bìa hình vuông canh bằng 1 nằm trong một hình vuông lớn có cạnh bằng 131. Chứng minh rằng trong hình vuông lớn,  ta luôn đặt được một một hình tròn bán kính 1 sao cho hình tròn trên không có điểm chung với bất cứ hình vuông nào.

---------Hết----------


Bài viết đã được chỉnh sửa nội dung bởi Arthur Pendragon: 18-06-2018 - 22:36


#2 Ha Minh Hieu

Ha Minh Hieu

    Trung sĩ

  • Thành viên
  • 118 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS TRẦN MAI NINH , THANH HÓA CITY
  • Sở thích:hình học phẳng

Đã gửi 18-06-2018 - 07:48

CÂU BẤT SỬ DỤNG BUNHIA Ở VP VÀ THAY 2 = ABC = VT/3 LÀ RA



#3 etucgnaohtn

etucgnaohtn

    Sĩ quan

  • Thành viên
  • 356 Bài viết
  • Giới tính:Nam
  • Sở thích:Ngắm like tăng dần

Đã gửi 01-07-2018 - 06:21

 

ĐỀ THI TUYỂN SINH VÀO 10 CHUYÊN TRẦN PHÚ NĂM HỌC 2018 - 2019

Câu 1:

a) Cho biểu thức $P=\frac{\sqrt{x}+1}{4-x}:\frac{1}{2\sqrt{x}-x}+\frac{1}{2-\sqrt{x}}$ với $x>0$ và $x\neq 4$.

Rút gọn biểu thức $P$. Tìm giá trị của x để $P>\frac{1}{7}$

b) Cho phương trình $x^2+6x-6m-m^2=0$(1)  (với m là tham số). Tìm giá trị của $m$ để phương trình (1) có hai nghiệm $x_1,x_2$ thỏa mãn $x_1^2=6x_1+x_2$

Câu 2:

a) Giải phương trình $\sqrt{3x-2}-\sqrt{x+1}=2x^2+x-6$

b) Giải phương trình $\left\{\begin{matrix} y^2-xy-2x^2=6(x+y)\\ (4x+1)^2=3(4y-21) \end{matrix}\right.$

Câu 3: Cho đường tròn (O) và một điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng AO cắt đường tròn (O) tại hai điểm D,E (D nằm giữa A và E). Gọi H là giao điểm của BC và AO.

a) Chứng minh D là tâm đường tròn nội tiếp tam giác ABC.

b) Trên cung nhỏ CD của đường tròn (O) lấy điểm F tùy ý (F khác C,D).Từ A kẻ đường thẳng vuông góc với lần lượt cắt FC, FE lần lượt tại M,N.

Chứng minh rằng $\frac{AB}{AE}=\frac{BD}{BE}$ và $\frac{NF}{NE}=\frac{BD^2}{BE^2}$

c) MB cắt (O) tại P (P khác B). chứng minh rằng NH song song với PD.

Câu 4:

Cho ba số dương a,b,c thỏa mãn $abc=2$. Chứng minh rằng

$a^3+b^3+c^3 \geq a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}$

Câu 5:

a) Với mỗi số nguyên dương $n$, ký hiệu $S_n=1^2+2^2+3^2+...+n^2$ .Chứng minh rằng $24(2n+3)S_n+1$  là số chính phương.

b) Đặt tùy ý 2018 tấm bìa hình vuông canh bằng 1 nằm trong một hình vuông lớn có cạnh bằng 131. Chứng minh rằng trong hình vuông lớn,  ta luôn đặt được một một hình tròn bán kính 1 sao cho hình tròn trên không có điểm chung với bất cứ hình vuông nào.

---------Hết----------

 

Phần a câu 5 khá dễ 
Mình chính là người đã đặt vấn đề và nghĩ ra cách tính tổng dãy số này bằng máy tính năm lớp 11
Thật ra đề bài chỉ yêu cầu nhớ được công thức $1^2+2^2+...+n^2=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n$
Thế vào là ra $24(2n+3)S_n+1=24(2n+3)(\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n)+1=(4n^2+6n+1)^2$


Tác giả :

 

Lương Đức Nghĩa 

 

 


#4 Ngoclinhhh

Ngoclinhhh

    Lính mới

  • Thành viên mới
  • 2 Bài viết

Đã gửi 12-10-2018 - 12:29

Có ai chữa câu hình không ạ





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh