Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CMR : Tồn tại một đường tròn đi qua 3 điểm trong số chúng mà không chứa các điểm còn lại.

tổ hợp wangtax toán rời rạc

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 BurakkuYokuro11

BurakkuYokuro11

    Thượng sĩ

  • Thành viên
  • 224 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K47 THPT Chuyên Phan Bội Châu
  • Sở thích:$\boxed{Literature}$

Đã gửi 26-06-2018 - 19:02

Trên mặt phẳng cho n điểm ( $n \geq 3$), trong đó không có 3 điểm nào thẳng hàng.CMR: Tồn tại 1 đường tròn đi qua 3 điểm trong số các điểm đã cho mà không chứa các trong nó điểm nào trong số các điểm còn lại.


A beautiful and pure love story passed, a boring truth of social is happening and a dream faded away...

 

Vòng bao tuổi cây để Lớn lên, vòng bao đời tôi để lãng quênvòng quay ngày đêm ngập tinh tú căng tràn giấc êm... Vòng ôm tuổi thơ là tiếng ruvòng tay tình nhân là chiếc hôn, vòng quanh mặt trăng cùng trái đất xoay tròn khoảng không...nhớ mong ... tiếng ai ...vắng xa..

 

Anh ... bão hoà sóng gió... để kết tinh một đời..thảnh thơi ...bão hoà dối gian ...để kết tinh lòng thành... Thời Tôi... bão hoà kí ức ...để kết tinh hiện tại.. còn Ta...bão hoà vắng xa lại ngỡ như gần hơn

....

 

 


#2 YoLo

YoLo

    Thượng sĩ

  • Thành viên
  • 223 Bài viết
  • Giới tính:Nam
  • Sở thích:Nothing

Đã gửi 26-06-2018 - 23:41

Trên mặt phẳng cho n điểm ( $n \geq 3$), trong đó không có 3 điểm nào thẳng hàng.CMR: Tồn tại 1 đường tròn đi qua 3 điểm trong số các điểm đã cho mà không chứa các trong nó điểm nào trong số các điểm còn lại.

Đề bài thiếu : không có $4$ điểm nào cùng thuộc $1$ đường tròn ( nhỡ $n$ điểm này cùng thuộc $1$ đường tròn)

Có $n$ điểm mà ko có $3$ điểm nào thẳng hàng luôn tồn tại $2$ điểm sao cho $n-2$ điểm còn lại $\in$ cùng một nửa mặt phẳng có bờ là đường thẳng chứa đoạn thẳng có $2$ mút là $2$ điểm trên

gọi $2$ điểm đó là $A_{1},A_{2}$ và $n-2$ điểm còn lại là $B_{1},B_{2},B_{3},...,B_{n-2}$

Xét các góc $\widehat{A_{1}B_{i}A_{2}} (i=1,2,3,..,n-2)$

luôn tồn tại một góc có số đo lớn hơn hẳn những góc còn lại giả sử là $\widehat{A_{1}B_{m}A_{2}}$

khi đó vẽ đường tròn ngoại tiếp TG này

Dễ cm nếu $\exists 1$ điểm nằm trong đường tròn đó gs là $B_{n}$ thì $\widehat{A_{1}B_{n}A_{2}}>\widehat{A_{1}B_{m}A_{2}}$

=> vô lý vì góc trên là lớn nhất

P/s : Bài náy có thể mở rộng là có thể vẽ $1$ đường tròn chứa đúng $m$ điểm với ($m\leq n$)


Người ta không mắc sai lầm vì dốt mà là vì tưởng là mình giỏi :closedeyes:






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: tổ hợp, wangtax, toán, rời rạc

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh