Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$U_n=\left (1+\frac{1}{n} \right )^{n+1}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Khoa Linh

Khoa Linh

    Thiếu úy

  • Thành viên
  • 601 Bài viết
  • Giới tính:Nam
  • Đến từ:Khóa 36, THPT chuyên Hùng Vương, Phú Thọ
  • Sở thích:geometry, inequality

Đã gửi 28-08-2018 - 20:40

Chứng minh dãy số sau là dãy số giảm $(U_n)$: $U_n=\left (1+\frac{1}{n} \right )^{n+1} $ với $n\geq 1$


Bài viết đã được chỉnh sửa nội dung bởi Khoa Linh: 28-08-2018 - 20:41

$\sqrt[LOVE]{MATH}$

"If I feel unhappy, I do mathematics to become happy. If I am happy, I

 

do mathematics to keep happy" - Alfréd nyi 


#2 Hr MiSu

Hr MiSu

    Thượng sĩ

  • Thành viên
  • 206 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi cuối của đường chân trời!
  • Sở thích:Ngắm những gì đẹp nhất, bao gồm cả cô ấy!

Đã gửi 28-08-2018 - 21:35

Mình đã cố gắng hết sức dùng bđt mà ko thành, đành phải xét hàm thôi

Capturec35b94e2d4e90a0c.png


s2_PADY_s2

Hope is a good thing, maybe the best thing, and no good thing ever dies


#3 Khoa Linh

Khoa Linh

    Thiếu úy

  • Thành viên
  • 601 Bài viết
  • Giới tính:Nam
  • Đến từ:Khóa 36, THPT chuyên Hùng Vương, Phú Thọ
  • Sở thích:geometry, inequality

Đã gửi 28-08-2018 - 22:38

Mình đã cố gắng hết sức dùng bđt mà ko thành, đành phải xét hàm thôi

Capturec35b94e2d4e90a0c.png

Em vừa nghĩ ra cách giải khác 

Ta đi chứng minh: $\left ( 1+\frac{1}{n} \right )^{n+1}>\left ( 1+\frac{1}{n+1} \right )^{n+2}\Leftrightarrow (n+1)^{2n+3}>n^{n+1}.(n+2)^{n+2}$

$\Leftrightarrow (n(n+2)+1)^{n+1}.(n+1)>(n(n+2))^{n+1}.(n+2)\Leftrightarrow \left ( 1+\frac{1}{n(n+2)} \right )^{n+1}>\frac{n+2}{n+1}=1+\frac{1}{n+1}$

Áp dụng  BĐT Bernoulli ta có: 

$\left ( 1+\frac{1}{n(n+2)} \right )^{n+1}>1+\frac{n+1}{n(n+2)}$

vậy ta cần chứng minh: $\frac{n+1}{n(n+2)}>\frac{1}{n+1}\Leftrightarrow (n+1)^2>n(n+2)$ (đúng)


$\sqrt[LOVE]{MATH}$

"If I feel unhappy, I do mathematics to become happy. If I am happy, I

 

do mathematics to keep happy" - Alfréd nyi 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh