Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$BC,QR$ và tiếp tuyến tại $P$ của $(O)$ đồng quy.


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Khoa Linh

Khoa Linh

    Thiếu úy

  • Thành viên
  • 601 Bài viết
  • Giới tính:Nam
  • Đến từ:Khóa 36, THPT chuyên Hùng Vương, Phú Thọ
  • Sở thích:geometry, inequality

Đã gửi 17-09-2018 - 22:09

Cho $\triangle ABC$ nội tiếp $(O)$ có $M$ là trung điểm $BC$. Lấy $D,E \in BC$ và đối xứng nhau qua $M$. $AM,AD,AE$ cắt $(O)$ tại điểm thứ hai là $P,Q,R$. Chứng minh rằng $BC,QR$ và tiếp tuyến tại $P$ của $(O)$ đồng quy. 

 

Hình gửi kèm

  • aops.png

$\sqrt[LOVE]{MATH}$

"If I feel unhappy, I do mathematics to become happy. If I am happy, I

 

do mathematics to keep happy" - Alfréd nyi 


#2 Kim Vu

Kim Vu

    Thượng sĩ

  • Thành viên
  • 212 Bài viết
  • Giới tính:Nam
  • Đến từ:

Đã gửi 17-09-2018 - 22:57

Gọi giao điểm điểm tiếp tại $P$ của $(O)$ với $QR $ là $I$
Ta sẽ chứng minh $E,D,I$ thẳng hàng
Từ giả thiết suy ra $BE=DC;EC=BD$
$ER.EA=EB.EC;DQ.DA=DB.DC$ nên $ER.EA=DQ.DA \rightarrow \frac{DQ}{ER}=\frac{AE}{AD}$
Mặt khác $\frac{AE}{AD}=\frac{sin\widehat{MAD}}{sin\widehat{EAM}}=\frac{PQ}{PR}$
Và $\frac{IR}{IQ}=(\frac{PR}{PQ})^2$
nên ta có:
$\frac{EA}{ER}.\frac{DQ}{DA}.\frac{IR}{IQ}=\frac{PQ}{PR}.\frac{PQ}{PR}.(\frac{PR}{PQ})^2=1$
Suy ra ĐPCM

 






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh