Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Cho $0\leq U_n \leq 2$ va $U_{n}+U_{n+2}\geq 2U_{n+1}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 didifulls

didifulls

    Thượng sĩ

  • Thành viên
  • 221 Bài viết
  • Giới tính:Nam
  • Đến từ:.
  • Sở thích:Không khai báo

Đã gửi 21-09-2018 - 21:08

$0\leq U_n \leq 2$ va $U_{n}+U_{n+2}\geq 2U_{n+1}$ , $n \leq 1$
cmr $0 \leq n(U_n-U_{n+1}) \leq 2$ 

''.''


#2 didifulls

didifulls

    Thượng sĩ

  • Thành viên
  • 221 Bài viết
  • Giới tính:Nam
  • Đến từ:.
  • Sở thích:Không khai báo

Đã gửi 23-09-2018 - 18:56

 

$0\leq U_n \leq 2$ va $U_{n}+U_{n+2}\geq 2U_{n+1}$ , $n \leq 1$
cmr $0 \leq n(U_n-U_{n+1}) \leq 2$ 

Mọi người giúp em với ạ! help me pls!!


''.''


#3 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1769 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 24-09-2018 - 17:50

 

$0\leq U_n \leq 2$ va $U_{n}+U_{n+2}\geq 2U_{n+1}$ , $n \leq 1$
cmr $0 \leq n(U_n-U_{n+1}) \leq 2$ 

 

 

Vì dãy $\left\{u_k-u_{k+1} \right\}$ là dãy giảm nên 

$$n(u_{n}-u_{n+1})\le (u_1-u_2)+(u_2-u_3)+...+(u_n-u_{n+1})=u_1-u_{n+1}\le 2.$$


Đời người là một hành trình...





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh