Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$\sum \frac{a^4}{b^3+c^3}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 dungxibo123

dungxibo123

    Sĩ quan

  • Thành viên
  • 330 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Toán Nguyễn Thượng Hiền
  • Sở thích:...

Đã gửi 22-09-2018 - 10:15

Cho $a,b,c>0$

Chứng minh
$\sum \frac{a^4}{b^3+c^3} \geq \frac{a+b+c}{2}$


Bài viết đã được chỉnh sửa nội dung bởi dungxibo123: 22-09-2018 - 10:15

myfb : www.facebook.com/votiendung.0805
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o0o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SỢ HÃI giúp ta tồn tại

NGHỊ LỰC giúp ta đứng vững

KHÁT VỌNG giúp ta tiến về phía trước

Võ Tiến Dũng  

:like  :like  :like  :like  :like 

 

 


#2 Kim Vu

Kim Vu

    Thượng sĩ

  • Thành viên
  • 212 Bài viết
  • Giới tính:Nam
  • Đến từ:

Đã gửi 22-09-2018 - 16:52

Cho $a,b,c>0$

Chứng minh
$\sum \frac{a^4}{b^3+c^3} \geq \frac{a+b+c}{2}$

$\sum \frac{a^4}{b^3+c^3}\geq \frac{a+b+c}{2}\\ \Leftrightarrow \sum \frac{a(a^3+b^3+c^3)-a(b^3+c^3)}{b^3+c^3}\geq \frac{a+b+c}{2} \\ \Leftrightarrow \sum \frac{a(a^3+b^3+c^3)}{b^3+c^3}\geq \frac{3}{2}(a+b+c) \\ \Leftrightarrow \sum \frac{a}{b^3+c^3}\geq \frac{3(a+b+c)}{2(a^3+b^3+c^3)}$
$\sum \frac{a}{b^3+c^3}=\sum \frac{a^2}{a(b^3+c^3)} \geq  \frac{(a+b+c)^2}{\sum a(b^3+c^3)}$(Cauchy-Schwarz)
Cần chứng minh $2(a+b+c)(a^3+b^3+c^3) \geq 3\sum a(b^3+c^3)$
$\Leftrightarrow 2(a^4+b^4+c^4) \geq ab^3+a^3b+bc^3+b^3c+ca^3+c^3a$
Điều này đúng do $a^4+b^4 \geq ab^3+a^3b$



#3 dungxibo123

dungxibo123

    Sĩ quan

  • Thành viên
  • 330 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Toán Nguyễn Thượng Hiền
  • Sở thích:...

Đã gửi 22-09-2018 - 22:27

$\sum \frac{a^4}{b^3+c^3}\geq \frac{a+b+c}{2}\\ \Leftrightarrow \sum \frac{a(a^3+b^3+c^3)-a(b^3+c^3)}{b^3+c^3}\geq \frac{a+b+c}{2} \\ \Leftrightarrow \sum \frac{a(a^3+b^3+c^3)}{b^3+c^3}\geq \frac{3}{2}(a+b+c) \\ \Leftrightarrow \sum \frac{a}{b^3+c^3}\geq \frac{3(a+b+c)}{2(a^3+b^3+c^3)}$
$\sum \frac{a}{b^3+c^3}=\sum \frac{a^2}{a(b^3+c^3)} \geq  \frac{(a+b+c)^2}{\sum a(b^3+c^3)}$(Cauchy-Schwarz)
Cần chứng minh $2(a+b+c)(a^3+b^3+c^3) \geq 3\sum a(b^3+c^3)$
$\Leftrightarrow 2(a^4+b^4+c^4) \geq ab^3+a^3b+bc^3+b^3c+ca^3+c^3a$
Điều này đúng do $a^4+b^4 \geq ab^3+a^3b$

có cách tách theo SOS không bạn ? mình vừa làm quen phương pháp này nên muốn áp dụng thử


myfb : www.facebook.com/votiendung.0805
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o0o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SỢ HÃI giúp ta tồn tại

NGHỊ LỰC giúp ta đứng vững

KHÁT VỌNG giúp ta tiến về phía trước

Võ Tiến Dũng  

:like  :like  :like  :like  :like 

 

 


#4 AnhTran2911

AnhTran2911

    Thượng sĩ

  • Thành viên
  • 230 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên PBC , Vinh, Nghệ An.
  • Sở thích:pp

Đã gửi 04-10-2018 - 09:49

Chebyshev cho $(\sum{a})$ và $(\sum{\frac{a^3}{b^3+c^3}})$


        AQ02

                                 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh