Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$y_{n}=\sum_{k=1}^{n}\frac{(-1)^{k}}{x_{k+1}+x_{k}+3}$

giới hạn

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 aoanh123

aoanh123

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 01-12-2018 - 15:19

Cho dãy $(x_{n})$ xác định như sau: $x_{1}=2,x_{2}=10;x_{n+2}=\frac{8x_{n+1}^{2}-x_{n+1}x_{n}}{x_{n+1}+x_{n}},n\geqslant 1.$

Với mỗi số nguyên dương n, đặt $y_{n}=\sum_{k=1}^{n}\frac{(-1)^{k})}{x_{k+1}+x_{k}+3}$.

Chứng minh rằng dãy $y_{n}$ có giới hạn hữu hạn khi n dần ra vô cực và tìm giới hạn đó.



#2 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1769 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 07-12-2018 - 18:14

Cho dãy $(x_{n})$ xác định như sau: $x_{1}=2,x_{2}=10;x_{n+2}=\frac{8x_{n+1}^{2}-x_{n+1}x_{n}}{x_{n+1}+x_{n}},n\geqslant 1.$

Với mỗi số nguyên dương n, đặt $y_{n}=\sum_{k=1}^{n}\frac{(-1)^{k})}{x_{k+1}+x_{k}+3}$.

Chứng minh rằng dãy $y_{n}$ có giới hạn hữu hạn khi n dần ra vô cực và tìm giới hạn đó.

 

https://diendantoanh...rac-1kx-k1x-k3/


Đời người là một hành trình...






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: giới hạn

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh