Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh

Tìm Min $P=\sum \frac{1}{a^{4}.(b+1).(c+1)}$


  • Please log in to reply
Chủ đề này có 5 trả lời

#1 MyWorldMaths

MyWorldMaths

    Hạ sĩ

  • Thành viên
  • 51 Bài viết

Đã gửi 09-12-2018 - 12:32

1. Tìm Min $P=\sum \frac{1}{a^{4}.(b+1).(c+1)}$

 

2. Cho x,y,z >0 CMR$\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}> 12$

 

3. Cho a,b,c đôi một khác nhau là độ dài 3 cạnh 1 tam giác .cmr $\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{a}{b+c-a}}> 3$

 

4. Cho x,y,z >0 và x+y+z =3 .cmr $\frac{x^{3}}{y^{3}+8}+\frac{y^{3}}{z^{3}+8}+\frac{z^{3}}{x^{3}+8}\geq \frac{1}{9}+\frac{2}{27}(xy+yz+zx)$

 

5. Cho a,b,c >0 .cmr $\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}\geq \sqrt{a^{2}-ab+b^{2}}+\sqrt{b^{2}-bc+c^{^{2}}}+\sqrt{c^{2}-ca+a^{2}}$

 


Bài viết đã được chỉnh sửa nội dung bởi Tea Coffee: 21-02-2019 - 09:56


#2 onpiece123

onpiece123

    Binh nhất

  • Thành viên mới
  • 42 Bài viết

Đã gửi 09-12-2018 - 20:19

Bài 4 .Ta có : $\frac{x^{3}}{y^{3}+8}+\frac{y+2}{27}+\frac{y^{2}-2y+4}{27}\geq \frac{x}{3}$ 

Tương tự ta được : $\sum \frac{x^{3}}{y^{3}+8} \geq \frac{x+y+z}{3}-\frac{x+y+z+6}{27}+\frac{x^{2}+y^{2}+z^{2}-(x+y+z)+12}{27}$



#3 MyWorldMaths

MyWorldMaths

    Hạ sĩ

  • Thành viên
  • 51 Bài viết

Đã gửi 11-12-2018 - 23:30

câu 1.   Đặt ẩn phụ $a=\frac{1}{x}$ , $b=\frac{1}{y},c=\frac{1}{z}$ thay ngược trở lại sẽ ra bài toán quen thuộc 

dùng cauchy 3 số là ra 

Câu 2: cộng phân thức 1 với 25, pt 2 với 4, pt 3 với 9 quy đồng lên là ra

Câu 3: trục căn thức ở tử để cauchy cho mẫu

câu 5 :tự giải quyết



#4 huyenthoaivip1

huyenthoaivip1

    Binh nhất

  • Thành viên mới
  • 26 Bài viết
  • Giới tính:Nam
  • Đến từ:Sông Lô- Vĩnh Phúc .Trường THPT Sáng Sơn

Đã gửi 14-12-2018 - 20:48

Bài 4 .Ta có : $\frac{x^{3}}{y^{3}+8}+\frac{y+2}{27}+\frac{y^{2}-2y+4}{27}\geq \frac{x}{3}$ 

Tương tự ta được : $\sum \frac{x^{3}}{y^{3}+8} \geq \frac{x+y+z}{3}-\frac{x+y+z+6}{27}+\frac{x^{2}+y^{2}+z^{2}-(x+y+z)+12}{27}$



#5 lethanhtuan213

lethanhtuan213

    Binh nhất

  • Thành viên mới
  • 28 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{green}{\text{Le Thanh Tong GH}}$
  • Sở thích:$\color{red}{\text{Maths}}$

Đã gửi 13-01-2019 - 11:23

Bài 5

vzNk0OI.jpg


"Cứ mãi ở ao làng, rồi ao sẽ cạn

Sao không ra sông ra biển để vẫy vùng?"

                                           - trích Trên đường băng


#6 DOTOANNANG

DOTOANNANG

    Thượng úy

  • Điều hành viên Đại học
  • 1333 Bài viết
  • Giới tính:Nam
  • Đến từ:T H P T Ngô Gia Tự ( "bắp nhà chùa" ) , Phú Yên

Đã gửi 01-02-2019 - 10:06

$\it{[}$ $\it{3}$ $\it{]}$Với $\it{k}\geqq \it{1}\,/\,\it{6}$ $\it{3}$ cạnh tam giác $\it{a},\,\it{b},\,\it{c}$ thì $\it{:}$ $\sum\limits_{cyc} \sqrt{\frac{\it{a}}{\it{b}+ \it{c}- \it{a}}+ \it{k}}\geqq \it{3}\,\sqrt{\it{1}+ \it{k}}$

Với $\it{0}< \it{k}\leqq \it{1}\,/\,\it{6}$  $\it{3}$ cạnh tam giác $\it{a},\,\it{b},\,\it{c}$ thì $\it{:}$ $\sum\limits_{cyc} \sqrt{\frac{\it{a}}{\it{b}+ \it{c}- \it{a}}+ \it{k}}> \it{3}\,\sqrt{\it{1}+ \it{k}}$

 






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh