Đến nội dung

Hình ảnh

Cho a,b,c>0. CMR: $\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\leq \frac{a+b+c}{4}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1
hangnguyen2003

hangnguyen2003

    Binh nhất

  • Thành viên mới
  • 46 Bài viết

Cho a,b,c>0. CMR:

$\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\leq \frac{a+b+c}{4}$


It doesn't matter if you're the slowest kid in gym class or the fastest man alive. Every one of us is running, being alive is running, running from something, running to something or someone. And no matter how fast you are. There's some things you can't outrun. Some things always manage to catch up to you.

                                                                                                                                                                             ___ THE FLASH ___ 


#2
DOTOANNANG

DOTOANNANG

    Đại úy

  • ĐHV Toán Cao cấp
  • 1609 Bài viết

$\it{2}\,\left ( \frac{\it{ab}^{\,\it{2}}}{\it{a}^{\,\it{2}}+ \it{2}\,\it{b}^{\,\it{2}}+ \it{c}^{\,\it{2}}}+ \frac{\it{bc}^{\,\it{2}}}{\it{a}^{\,\it{2}}+ \it{b}^{\,\it{2}}+ \it{2}\,\it{c}^{\,\it{2}}} \right )\geqq$

$\geqq \frac{\it{2}\,\left ( \it{a}^{\,\it{5}}+ \it{ba}^{\,\it{4}}- \it{4}\,\it{a}^{\,\it{3}}\it{b}^{\,\it{2}}+ \it{bca}^{\,\it{3}}+ \it{5}\,\it{a}^{\,\it{2}}\it{b}^{\,\it{3}}- \it{ca}^{\,\it{2}}\it{b}^{\,\it{2}}- \it{ab}^{\,\it{4}}- \it{cab}^{\,\it{3}}+ \it{2}\,\it{b}^{\,\it{5}}+ \it{cb}^{\,\it{4}} \right )}{\left ( \it{a}^{\,\it{2}}+ \it{3}\,\it{b}^{\,\it{2}} \right )\left ( \it{a}^{\,\it{2}}+ \it{b}^{\,\it{2}}+ \it{2}\,\it{c}^{\,\it{2}} \right )}+ \it{b}$

Spoiler


#3
Song Binh

Song Binh

    Binh nhì

  • Thành viên mới
  • 17 Bài viết

Áp dụng bất đẳng thức phụ $\frac{1}{x+y}\leq \frac{1}{4}(\frac{1}{x}+\frac{1}{y})$

Ta có: $\frac{ab^2}{a^2+2b^2+c^2} = \frac{ab^2}{(a^2+b^2)+(b^2+c^2)} \leq \frac{ab^2}{4}(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}) = \frac{1}{4}(\frac{ab^2}{a^2+b^2}+\frac{ab^2}{b^2+c^2}) \leq \frac{1}{4}(\frac{ab^2}{2ab}+\frac{ab^2}{2bc}) = \frac{1}{4}(\frac{b}{2}+\frac{ab}{2c})$

Tương tự ta có: $\frac{bc^2}{b^2+2c^2+a^2}\leq \frac{1}{4}(\frac{c}{2}+\frac{bc}{2a})$

                          $\frac{ca^2}{c^2+2a^2+b^2}\leq \frac{1}{4}(\frac{a}{2}+\frac{ac}{2b})$

Cộng theo vế của các bất đẳng thức ta có: 

        $\frac{ab^2}{a^2+2b^2+c^2} + \frac{bc^2}{b^2+2c^2+a^2} + \frac{ca^2}{c^2+2a^2+b^2} \leq \frac{1}{4}(\frac{b}{2}+\frac{ab}{2c}) + \frac{1}{4}(\frac{c}{2}+\frac{bc}{2a}) + \frac{1}{4}(\frac{a}{2}+\frac{ac}{2b}) = \frac{1}{4}[\frac{a+b+c}{2}+ \frac{1}{2}(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b})]$

Ta phải chứng minh: $\frac{ab}{c}+ \frac{bc}{a}+ \frac{ca}{b} \leq a+b+c$

(Nhưng mình chỉ chứng minh được $\frac{ab}{c}+ \frac{bc}{a}+ \frac{ca}{b} \geq a+b+c$ thôi........)


Bài viết đã được chỉnh sửa nội dung bởi Song Binh: 23-12-2018 - 15:32

..........Song Ngư - Bảo BÌnh.........

               ........19-02........


#4
DOTOANNANG

DOTOANNANG

    Đại úy

  • ĐHV Toán Cao cấp
  • 1609 Bài viết

$\it{2}\,\left ( \frac{\it{ab}^{\,\it{2}}}{\it{a}^{\,\it{2}}+ \it{2}\,\it{b}^{\,\it{2}}+ \it{c}^{\,\it{2}}}+ \frac{\it{bc}^{\,\it{2}}}{\it{a}^{\,\it{2}}+ \it{b}^{\,\it{2}}+ \it{2}\,\it{c}^{\,\it{2}}} \right )\geqq$

$\geqq \frac{\it{2}\,\left ( \it{a}^{\,\it{5}}+ \it{ba}^{\,\it{4}}- \it{4}\,\it{a}^{\,\it{3}}\it{b}^{\,\it{2}}+ \it{bca}^{\,\it{3}}+ \it{5}\,\it{a}^{\,\it{2}}\it{b}^{\,\it{3}}- \it{ca}^{\,\it{2}}\it{b}^{\,\it{2}}- \it{ab}^{\,\it{4}}- \it{cab}^{\,\it{3}}+ \it{2}\,\it{b}^{\,\it{5}}+ \it{cb}^{\,\it{4}} \right )}{\left ( \it{a}^{\,\it{2}}+ \it{3}\,\it{b}^{\,\it{2}} \right )\left ( \it{a}^{\,\it{2}}+ \it{b}^{\,\it{2}}+ \it{2}\,\it{c}^{\,\it{2}} \right )}+ \it{b}$

Spoiler
Spoiler

 

$$\sum\limits_{\it{cyc}} \frac{\it{ab}^{\,\it{2}}}{\it{a}^{\,\it{2}}+ \it{2}\,\it{b}^{\,\it{2}}+ \it{c}^{\,\it{2}}}\leqq \frac{\it{1}}{\it{16}}\left ( \sum\limits_{\it{cyc}} \frac{\it{9}\,\it{ab}^{\,\it{2}}}{\it{a}^{\,\it{2}}+ \it{b}^{\,\it{2}}+ \it{c}^{\,\it{2}}}+ \sum\limits_{\it{cyc}} \frac{\it{ab}^{\,\it{2}}}{\it{b}^{\,\it{2}}} \right )\leqq \frac{\it{a}+ \it{b}+ \it{c}}{\it{4}}$$

 

$\lceil$ Bổ đề Titu $\rfloor$ $\lceil\,\,\it{3}\,\sum\limits_{\it{cyc}} \it{ab}^{\,\it{2}}\leqq \sum\limits_{\it{cyc}} \it{a}\sum\limits_{\it{cyc}} \it{a}^{\,\it{2}}\Leftrightarrow \sum\limits_{\it{cyc}} \it{a}\left ( \it{a}- \it{c} \right )^{\,\it{2}}\geqq \it{0}\,\,\rfloor$






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh