Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Tìm m để pt có ít nhất 1 nghiệm lớn hơn hoặc bằng 1


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 LoveMath1234567

LoveMath1234567

    Binh nhất

  • Thành viên mới
  • 22 Bài viết
  • Giới tính:Nữ
  • Đến từ:THPT AS1

Đã gửi 16-12-2018 - 21:20

Cho $ f\left ( x \right )= 2x^{2}+2\left ( m+1\right )x+m^{2}+4m+3$ 

a, Tìm m để $ f\left ( x \right )= 0$ có ít nhất 1 nghiệm lớn hơn hoặc bằng 1



#2 tritanngo99

tritanngo99

    Đại úy

  • Thành viên
  • 1756 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:$\href{https://www.youtube.com/watch?v=YNlEDsIQxWU}{Đây}$

Đã gửi 17-12-2018 - 11:03

Cho $ f\left ( x \right )= 2x^{2}+2\left ( m+1\right )x+m^{2}+4m+3$ 

a, Tìm m để $ f\left ( x \right )= 0$ có ít nhất 1 nghiệm lớn hơn hoặc bằng 1

Ta xét mệnh đề đảo của mệnh đề đã cho : Tìm $m$ sao cho phương trình đã cho vô nghiệm hoặc nếu có nghiệm thì các nghiệm đều bé hơn $1$.

Xét $\Delta'=(m+1)^2-2(m^2+4m+3)=-m^2-6m-5=-(m+1)(m+5)$.

Trường hợp 1: Phương trình vô nghiệm

Ta có phương trình đã cho vô nghiệm khi và chỉ khi $\Delta'<0\iff -(m+1)(m+5)<0\iff m>-1\text{ hoặc }m<-5$.

Trường hợp 2: Phương trình đã cho có nghiệm và các nghiệm đều bé hơn $1$.

Giả sử hai nghiệm đó là $x_1,x_2$ ($x_1,x_2$ không nhất thiết phân biệt)

Ta có: $\Delta\ge 0\iff -(m+1)(m+5)\ge 0\iff -5\le m\le -1(2)$.

Và $\left\{\begin{array}{I} x_1+x_2<2\\(x_1-1)(x_2-1)>0 \end{array}\right.$

$\iff \left\{\begin{array}{I} x_1+x_2<2\\x_1x_2-(x_1+x_2)+1>0 \end{array}\right.(1)$

Theo định lí Vi-et ta có:

$(1)\iff \left\{\begin{array}{I} -m-1<2\\\frac{m^2+4m+3}{2}+m+1+1>0 \end{array}\right.$

$\iff \left\{\begin{array}{I} m>-3\\\frac{m^2+6m+7}{2}>0 \end{array}\right.$

$\iff \left\{\begin{array}{I} m>-3\\ m<-3-\sqrt{2}\text{ hoặc }m>-3+\sqrt{2} \end{array}\right.$

$\iff m>-3+\sqrt{2}(3)$

Từ $(2)(3)\implies -3+\sqrt{2}<m\le -1$ 

Vậy từ 2 trường hợp trên ta thấy mệnh đề đảo xảy ra khi $m>-3+\sqrt{2}\text{ hoặc }m<-5$.

Quay lại bài toán. Ta kết luận, các giá trị của $m$ cần tìm là $-5\le m\le -3+\sqrt{2}$.


Bài viết đã được chỉnh sửa nội dung bởi tritanngo99: 17-12-2018 - 14:00

Yêu quê hương thương nhân loại núi sông cảm mến
Hiểu Thánh triết biết nghĩa nhân trời đất chở che

#3 LoveMath1234567

LoveMath1234567

    Binh nhất

  • Thành viên mới
  • 22 Bài viết
  • Giới tính:Nữ
  • Đến từ:THPT AS1

Đã gửi 17-12-2018 - 13:22

Ta xét mệnh đề đảo của mệnh đề đã cho : Tìm $m$ sao cho phương trình đã cho vô nghiệm hoặc nếu có nghiệm thì các nghiệm đều bé hơn $1$.

Xét $\Delta'=(m+1)^2-2(m^2+4m+3)=-m^2-6m-5=-(m+2)(m+3)$.

Trường hợp 1: Phương trình vô nghiệm

Ta có phương trình đã cho vô nghiệm khi và chỉ khi $\Delta'<0\iff -(m+2)(m+3)<0\iff m>-2\text{ hoặc }m<-3$.

Trường hợp 2: Phương trình đã cho có nghiệm và các nghiệm đều bé hơn $1$.

Giả sử hai nghiệm đó là $x_1,x_2$ ($x_1,x_2$ không nhất thiết phân biệt)

Ta có: $\Delta\ge 0\iff -(m+2)(m+3)\ge 0\iff -3\le m\le -2(2)$.

Và $\left\{\begin{array}{I} x_1+x_2<2\\(x_1-1)(x_2-1)>0 \end{array}\right.$

$\iff \left\{\begin{array}{I} x_1+x_2<2\\x_1x_2-(x_1+x_2)+1>0 \end{array}\right.(1)$

Theo định lí Vi-et ta có:

$(1)\iff \left\{\begin{array}{I} -m-1<2\\\frac{m^2+4m+3}{2}+m+1+1>0 \end{array}\right.$

$\iff \left\{\begin{array}{I} m>-3\\\frac{m^2+6m+7}{2}>0 \end{array}\right.$

$\iff \left\{\begin{array}{I} m>-3\\ m<-3-\sqrt{2}\text{ hoặc }m>-3+\sqrt{2} \end{array}\right.(3)$

Từ $(2)(3)$ ta thấy không có giá trị nào của $m$ thỏa mãn.

Vậy từ 2 trường hợp trên ta thấy mệnh đề đảo xảy ra khi $m>-2\text{ hoặc }m<-3$.

Quay lại bài toán. Ta kết luận, các giá trị của $m$ cần tìm là $-3\le m\le -2$.

Hình như bạn phân tích thành nhân tử sai r pải ko ạ ....$ -m^{2}-6m-5= -\left ( x+1 \right )\left ( x+5 \right )$  



#4 tritanngo99

tritanngo99

    Đại úy

  • Thành viên
  • 1756 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:$\href{https://www.youtube.com/watch?v=YNlEDsIQxWU}{Đây}$

Đã gửi 17-12-2018 - 14:01

Hình như bạn phân tích thành nhân tử sai r pải ko ạ ....$ -m^{2}-6m-5= -\left ( x+1 \right )\left ( x+5 \right )$  

Cảm ơn bạn, mình đã sửa lại ở trên.


Yêu quê hương thương nhân loại núi sông cảm mến
Hiểu Thánh triết biết nghĩa nhân trời đất chở che

#5 LoveMath1234567

LoveMath1234567

    Binh nhất

  • Thành viên mới
  • 22 Bài viết
  • Giới tính:Nữ
  • Đến từ:THPT AS1

Đã gửi 17-12-2018 - 17:37

Cảm ơn bạn, mình đã sửa lại ở trên.

bạn cho mik hỏi làm sao mk bn ra kết quả như dòng thứ 2 dưới lên vậy ạ .....Bạn phân tích ra cho mik vs






1 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh


    Google (1)