Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

ab+bc+ca<=3abc


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 t1k28CHT

t1k28CHT

    Binh nhất

  • Thành viên mới
  • 23 Bài viết
  • Giới tính:Nữ
  • Đến từ:Hà Tĩnh
  • Sở thích:❤️you❤️

Đã gửi 27-12-2018 - 21:50

Cho 3 số thực dương a, b, c thỏa mãn $ab+bc+ca\leqslant 3abc$. Chứng minh rằng:

$\frac{a^{4}b}{2a+b}+\frac{b^{4}c}{2b+c}+\frac{c^{4}a}{2c+a}\geqslant 1$.



#2 vmf999

vmf999

    Hạ sĩ

  • Thành viên
  • 88 Bài viết
  • Giới tính:Nam

Đã gửi 27-12-2018 - 23:31

không biết đúng không @@ bạn xem đỡ : ab+bc+ac $\leq$ 3abc 

<=> $\sum \frac{1}{a} \leq$ 3 

=> a+b+c $\geq$ 3  

$\sum \frac{a^{4}b}{2a+b}= \sum \frac{a^3}{\frac{2}{b}+\frac{1}{a}}=\sum \frac{\frac{a^{4}}{a}}{\frac{2}{b}+\frac{1}{a}}\geq \frac{(\sum \frac{a^{2}}{\sqrt{a}})^{2}}{3(\sum \frac{1}{a})}\geq \frac{(\sum \frac{a^{2}}{\sqrt{a}})^{2}}{9} \geq \frac{(\frac{(a+b+c)^{2}}{\sum \sqrt{a}})^{2}}{9} = \frac{(a+b+c)^{4}}{9(\sum \sqrt{a})^{2}}$

Ta lại có : $(\sum \sqrt{a})^{2} \leq 3(a+b+c)$

Cần chứng minh :  $\frac{(a+b+c)^{4}}{9(\sum \sqrt{a})^{2}}$ $\geq$ 1 

<=>  $\frac{(a+b+c)^{4}}{27(a+b+c)} \geq$ 1 

<=> $(a+b+c)^{4} \geq$ 27(a+b+c)

<=> (a+b+c)^3 $\geq$ 27 ( hiển nhiên do a+b+c $\geq$ 3 ) .

Mấy bạn xem lại giúp mình với 


Bài viết đã được chỉnh sửa nội dung bởi vmf999: 27-12-2018 - 23:36





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh