Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

đề thi hsg toán thành phố Hà Nội 2018-2019


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 MyWorldMaths

MyWorldMaths

    Hạ sĩ

  • Thành viên
  • 50 Bài viết

Đã gửi 10-01-2019 - 11:31

Kì thi chọn HSG toán thành phố lớp 9

Thời gian :150 phút

Bài 1:(5 điểm)

1. Giải PT :$\sqrt[3]{2-x}=1-\sqrt{x-1}$

 

2. Cho $S=(1-\frac{2}{2.3})(1-\frac{2}{3.4})...(1-\frac{2}{2020.2021})$ là tích của 2019 thừa số. Tính S (lấy kết quả là phân số tối giản)

 

Bài 2:(5 điểm)

1. Biết a,b là các số nguyên dương thỏa mãn $a^{2}-ab+b^{2}\vdots 9$. CMR cả a và b đều chia hết cho 3.

 

2. Tìm các số nguyên dương n sao cho $9^{n}+11$ là tích của k (k thuộc N, k >=2) số tự nhiên liên tiếp.

 

Bài 3:(3 điểm)

1. Cho x,y,z là các số thực dương nhỏ hơn 4. CMR  trong các số $\frac{1}{x}+\frac{1}{4-y};\frac{1}{y}+\frac{1}{4-z};\frac{1}{z}+\frac{1}{4-x}$ tồn tại ít nhất 1 số lớn hơn hoặc bằng 1.

 

2. Với a,b,c dương thỏa mãn $a^{2}+b^{2}+c^{2}+2abc=1.$. Tìm MAX $P=ab+bc+ca-abc$

 

Bài 4:(6 điểm)

        Cho tam giác ABC vuông tại A  (AB<AC). Đường tròn (I) nội tiếp tam giác ABC, tiếp xúc BC,CA,AB lần lượt tại D,E,F. Gọi S là giao điểm của AI và DE.

          1. CMR tam giác IAB đồng dạng tam giác EAS.

          2. Gọi K là trung điểm của AB. O là trung điểm của BC. CMR K,O,S thẳng hàng

          3. Gọi M là giao điểm của KI và AC. Đường thẳng chứa đường cao AH của tam giác ABC cắt DE tại N. CMR AM=AN

 

Bài 5:(1 điểm)

       Xét bảng ô vuông cỡ 10x10 gồm 100 hình vuông có cạnh 1 đơn vị. Người ta điền vào mỗi ô vuông của bảng 1 số nguyên tùy ý sao cho hiệu hai số được điền ở hai ô chung cạnh bất kỳ đều có GTTĐ ko vượt quá 1. CMR tồn tại một số nguyên xuất hiện trong bảng ít nhất 6 lần. 

 



#2 MyWorldMaths

MyWorldMaths

    Hạ sĩ

  • Thành viên
  • 50 Bài viết

Đã gửi 10-01-2019 - 11:34

mình ngu lắm chỉ làm đc 6/10 câu thôi. các bạn vào chữa giùm mình với  :(



#3 Lonely1122

Lonely1122

    Lính mới

  • Thành viên mới
  • 2 Bài viết

Đã gửi 12-01-2019 - 17:13

https://drive.google...EBe8Fhl2dOPNXhI






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh