Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 1 Bình chọn

$\lim_{x \to+ \infty }\left ( 1+\frac{2}{x-3sinx} \right )^{x+cosx}$

#gioihan #luonggiac

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 lenamhvtc

lenamhvtc

    Binh nhất

  • Thành viên mới
  • 22 Bài viết

Đã gửi 15-02-2019 - 15:00

Tính giới hạn: $\lim_{x \to+ \infty }\left ( 1+\frac{2}{x-3sinx} \right )^{x+cosx}$



#2 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1808 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 15-02-2019 - 16:14

Tính giới hạn: $\lim_{x \to+ \infty }\left ( 1+\frac{2}{x-3sinx} \right )^{x+cosx}$

 


 

Tính giới hạn: $\lim_{x \to+ \infty }\left ( 1+\frac{2}{x-3sinx} \right )^{x+cosx}$

 

Ta có 

 

$$\left ( 1+\frac{2}{x-3sinx} \right )^{x+cosx}= \left[ \left ( 1+\frac{2}{x-3sinx} \right )^{\frac{x-3\sin x}{2}}\right]^{\frac{2(x+cosx)}{x-3sinx}}.$$

 

Hơn nữa, vì $\lim_{x\to \infty}(x-3sinx)=\infty $ nên

\[\lim_{x\to \infty}\left ( 1+\frac{2}{x-3sinx} \right )^{\frac{x-3\sin x}{2}}=e,\]

và 

\[\lim_{x\to \infty}\frac{2(x+cosx)}{x-3sinx}=2.\]

Do đó, giới hạn cần tìm bằng $e^2.$


Đời người là một hành trình...





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh