Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$M$ là trung điểm $PQ$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 toanND

toanND

    Binh nhất

  • Thành viên mới
  • 49 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Du
  • Sở thích:bóng đá

Đã gửi 17-02-2019 - 11:05

Cho tam giác ABC, M là trung điểm BC. Gọi (I) là đường tròn nội tiếp tam giác ABC. Giả sử AM cắt (I) tại K, L (AK > AL). Các đường thẳng song song với BC qua K, L cắt (I) lần lượt tại X, Y. AX, AY cắt BC lần lượt tại P, Q. Chứng minh rằng: M là trung điểm PQ

Capture 2.PNG


Bài viết đã được chỉnh sửa nội dung bởi toanND: 17-02-2019 - 11:07

______________ :lol:  :lol:  :lol:  :lol:  :lol:  :lol: ______________

         


#2 Khoa Linh

Khoa Linh

    Thiếu úy

  • Thành viên
  • 601 Bài viết
  • Giới tính:Nam
  • Đến từ:Khóa 36, THPT chuyên Hùng Vương, Phú Thọ
  • Sở thích:geometry, inequality

Đã gửi 18-02-2019 - 08:40

Ta có bổ đề sau: Cho tam giác $ABC$ có đường tròn nội tiếp $(I)$ tiếp xúc với ba cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. $DI$ cắt $EF$ tại $X$. Khi đó $AX$ đi qua trung điểm $M$ của $BC$.

Chứng minh. 

Qua $X$ kẻ đường thẳng song song với $BC$ cắt $AB,AC$ theo thứ tự tại $Y,Z$. 

 
Ta có $\angle IXY=\angle IFY=\angle IXZ=\angle IEZ=90^{\circ}$ 
 
Suy ra tứ giác $XYFI$ và $XEZI$ nội tiếp 
 
Từ đó ta có $\angle IYX=\angle IFX=\angle IEX=\angle IZX \Rightarrow XY=XZ$.
 
Suy ra ta có $AX$ đi qua trung điểm $BC$.
 
Vậy bổ đề được chứng minh. 
 
Ta quay lại bài toán ban đầu. 
Gọi $D,E,F$ lần lượt là tiếp điểm của $(I)$ với ba cạnh $BC,CA,AB$. 
 
Lấy $Z$ là giao điểm $DI$ với $EF$. Khi đó theo bổ đề ta có $Z$ nằm trên $KL$ và theo tính chất đối xứng thì ta cũng có $X,Y,Z$ thẳng hàng. 
 
$AX$ cắt $YL$ tại $Y'$.
 
Ta thấy tứ giác $KELF$ là tứ giác điều hòa nên ta có 
 
$X(K,L;Y',Y)=X(K,L;A,L)=-1$
 
Mặt khác $XK \parallel YY'$ nên ta có $L$ là trung điểm $YY'$. 
 
Suy ra $M$ là trung điểm $PQ$ hay ta có $BP=CQ$.
 

$\sqrt[LOVE]{MATH}$

"If I feel unhappy, I do mathematics to become happy. If I am happy, I

 

do mathematics to keep happy" - Alfréd nyi 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh