Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Đề Thi Học Sinh Giỏi Toán 9 Bình Dương 2018-2019


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 ThinhThinh123

ThinhThinh123

    Trung sĩ

  • Thành viên
  • 135 Bài viết
  • Giới tính:Nữ
  • Đến từ:Bình Dương

Đã gửi 22-03-2019 - 20:03

Đề Thi Học Sinh Giỏi Toán 9 Bình Dương 2018-2019

 

Câu 4 có cách nào khác ko anh em! Mình dùng: $a^2=b^2+c^2-2.cos 45.b.c$ sợ không có điểm

Hình gửi kèm

  • BÌNH DƯƠNG.jpg

Bài viết đã được chỉnh sửa nội dung bởi ThinhThinh123: 22-03-2019 - 20:05


#2 ThuanTri

ThuanTri

    Hạ sĩ

  • Thành viên
  • 60 Bài viết
  • Giới tính:Nam
  • Đến từ:Sao Mộc
  • Sở thích:Ăn, chơi, ngủ, ăn sách toán thay cơm.

Đã gửi 27-03-2019 - 21:16

câu 1b là cú lừa cực mạnh


   Trăm năm Kiều vẫn là Kiều

Sinh viên thi lại là điều tất nhiên.


#3 Tea Coffee

Tea Coffee

    Trung úy

  • Điều hành viên THPT
  • 756 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K47 THPT chuyên Phan Bội Châu
  • Sở thích:$\boxed{Maths}$

Đã gửi 16-04-2019 - 20:35

Câu 1: (4 điểm)

a) Tìm các chữ số $x$ và $y$ sao cho $\overline{xxyy}=(\overline{xx})^{2}+(\overline{yy})^{2}$

b) Tìm chữ số tận cùng của số $N$ 

Câu 2: (3 điểm)

Giả sử phương trình $x^{2}+ax+b=0$ có nghiệm $x_{1},x_{2}$ và phương trình $x^{2}+cx+d=0$ có nghiệm $x_{3},x_{4}$. Chứng minh rằng $2(x_{1}+x_{3})(x_{1}+x_{4})(x_{2}+x_{4})(x_{3}+x_{4})=2(b-d)^{2}-(a^{2}-c^{2})(b-d)+(b+d)(a+c)^{2}$

Câu 3: (5 điểm)

a) Tìm các cặp số nguyên $(x,y)$ sao cho $x^{2}-668xy-669y^{2}=2019$

b) Giải hệ phương trình $\left\{\begin{matrix}2x+\frac{2}{x}+2y+\frac{2}{y}=9 \\ 4x^{2}+\frac{4}{x^{2}}+4y^{2}+\frac{4}{y^{2}}=25 \end{matrix}\right.$

Câu 4: (4 điểm)

Cho hình vuông $ABCD$ nội tiếp đường tròn $(O)$ lấy một điểm $M$ ($M$ khác $C,D$)  trên cung $CD$ của đường tròn $(O)$. Chứng minh $MA+MC=\sqrt{2}MB$

Câu 5: (4 điểm)

Cho đường tròn tâm $O$ đường kính $AB$. Tiếp tuyến tại điểm $M$ ($M$ khác $A,B$) tùy ý trên đường tròn tâm $O$ cắt các tiếp tuyến của đường tròn tại $A$,$B$ tại $C,D$

a) Xác định vị trí của điểm $M$ sao cho chu vi tam giác $COD$ nhỏ nhất

b) Gọi $E$ là giao điểm $OC$ và $AM$ , $F$ là giao $OD$ và $BM$. Xác định vị trí của điểm $M$ để đường tròn ngoại tiếp tứ giác $CEFD$ có bán kính nhỏ nhất.


Bài viết đã được chỉnh sửa nội dung bởi Tea Coffee: 16-04-2019 - 20:36

Treasure every moment that you have!
And remember that Time waits for no one.
Yesterday is history. Tomorrow is a mystery.
Today is a gift. That’s why it’s called the present.





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh