Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh $F$ là trung điểm $AC$

toán 9 hình học

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Monkey Moon

Monkey Moon

    Trung sĩ

  • Thành viên
  • 116 Bài viết
  • Giới tính:Nữ
  • Đến từ:Mysterious World
  • Sở thích:Học tập, đi du lịch, đọc sách, chơi thể thao, tận hưởng thời gian bên bạn bè, ...

Đã gửi 07-05-2019 - 06:02

Cho $(O)$ và $A$ ở ngoài đường tròn. Kẻ tiếp tuyến $AB,AC$ của $(O)$. $OA$ cắt $BC$ tại $H$. Gọi $K$ là trung điểm $BH$, đường thẳng vuông góc với $OK$ tại $K$ cắt $AB,AC$ lần lượt ở $D,F$. Chứng minh $F$ là trung điểm $AC$. (Có thể sử dụng tam giác $ODF$ cân tại $O$)

Bài viết đã được chỉnh sửa nội dung bởi Monkey Moon: 07-05-2019 - 06:02


#2 Sin99

Sin99

    Sĩ quan

  • Thành viên
  • 430 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:$ \boxed { \color{Red}{\boxed { \rightarrow \color{Blue}{\textbf{ PTNK } } \leftarrow } } } $
  • Sở thích:$ \textbf{ Alone } $

Đã gửi 07-05-2019 - 14:59

Nếu đã chứng minh tam giác $ ODF $ mà $ OK $ vuông $ DF $ => $ K $ là trung điểm DF. Mặt khác có $ K $ là trung điểm $ BH $ suy ra $ BDHF $ là hình bình hành => $ HF $ // $ AD$  mà  $ H $ là trung điểm $ BC $ nên $ F $ là trung điểm $ AC $ ( t/c đường trung bình ) 


$ \boxed{ \textbf{ Niềm hạnh phúc to lớn nhất của mọi cuộc đời là sự cô đơn bận rộn. - Voltaire } } $ 






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh