Đến nội dung

Hình ảnh

Đề thi môn Toán chuyên tuyển sinh lớp 10 chuyên Trần Hưng Đạo Bình Thuận năm học 2019-2010


  • Please log in to reply
Chủ đề này có 27 trả lời

#21
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

Tìm tất cả các số nguyên dương $n$ sao cho tồn tại các số nguyên không âm $a_1,a_2,\ldots,a_n$ thỏa mãn
$$ \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \cdots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \cdots + \frac{n}{3^{a_n}} = 1 $$

 



#22
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

Gọi $n $ là tốt nếu $n $ thỏa mãn bài toán.
Ta chứng minh một số tính chất sau:

1. $n\equiv 1, 2 \pmod 4 $

Thật vậy, viết bài toán dạng $\sum\limits_{k=1}^{n}2^{a-a_{k}} = 2^{a} $ và $\sum\limits_{k=1}^{n}k.3^{a-a_{k}} = 3^{a} $ với $a = \max\{a_{k}\} $

Ta có $\sum\limits_{k=1}^{n}k\equiv \sum\limits_{k=1}^{n}k.3^{a-a_{k}} = 3^{a}\equiv 1\pmod 2 $, do đó $n\equiv 1, 2 \pmod 4 $.

2. Nếu $n $ thỏa mãn bài toán và $n $ lẻ thì $n+1 $ cũng thỏa mãn bài toán.

Chứng minh:

Vì $n $ lẻ nên $j = (n+1)/2 $ là số nguyên dương.

Đặt dãy mới như sau: 

$(b_1,...,b_{n+1}) = (a_1,a_2,..,a_{j-1},a_{j}+1,a_{j+1}...,a_{n},a_{n+1} = a_{j}+1) $

Dễ thấy $\sum\limits_{k=1}^{n+1}\frac{1}{2^{b_k}} = 1 $ và $\sum\limits_{k=1}^{n+1}\frac{k}{3^{b_k}} = 1 = \sum\limits_{k=1}^{n}\frac{k}{3^{a_k}} - \frac{3j}{3^{a_j}} + \frac{3j}{3^{a_j+1}} + \frac{3(n+1)}{3^{a_j+1}} = 1 +\frac{3j+3n+3}{3^{a_j+1}} - \frac{3j}{3^{a_j}}= 1 $.

3. Nếu $n = 8l-2 $ thỏa mãn thì $n+3 $ cũng thỏa mãn.

Chứng minh như trên. Lặp dãy mới bằng cách chọn $j = (3n+6)/8 $ và thay $a_j $ bởi $a_{j}+2 $, thêm $a_{n+1},...,a_{n+3} = a_{j}+2 $.

4. Nếu $n + 2 = 3j $ và $n $ thỏa mãn thì $n+3 $ cũng thỏa mãn.  



#23
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

Biến đổi biểu thức thành:
$(f(a) - f(b))^2 = f(c) (2f(a) + 2f(b) - f(c))$

Ta cho các giá trị của $a,b,c$ và nhận được $f$ như sau:
(i) $a = b = c = 0 \Rightarrow f(0) = 0$

(ii) $b = -a, c = 0 \Rightarrow f(-a) = f(a)$ 

(iii) $a = b = 1, c = -2 \Rightarrow f(2) = 0$ Hoặc $f(2) = 4f(1)$

1. Nếu: $f(2) = 0$
Ta dùng quy nạp để chứng minh: $\Rightarrow f(2n) = 0$

Thật vậy, nếu $f(2k) = 0$ , 
ta cho $a = 2, b = 2k, c = -2k-2 \Rightarrow f(2k+2) = 0$

Vậy: $\Rightarrow f(2n) = 0$ với mọi $n \in N$

Cho $a=2k+1,b=-(2k+3),c=2$ cùng với chú ý (ii) ta có:
$\Rightarrow$ với mọi cặp số lẻ $a, b$, $f(a) = f(b)$

Vây ở trường hợp này $f(x) = c$ với $x$ lẻ, $f(x) = 0$ với $x$ chẵn.

2. Nếu $f(2) = 4f(1)$
Vẫn dùng quy nạp:
Nếu $f(i) = i^2 f(1)$ với mọi $i \leq k$ thì cho $a = 1, b = k, c = -k-1 \Rightarrow f(k+1) = (k+1)^2 f(1)$ hoặc $f(k+1) = (k-1)^2 f(1)$

(*) Nếu $f(k+1) = (k-1)^2 f(1)$ thì cho $a=k+1, b=-k+1, c = -2 \Rightarrow f(1) = 0
\Rightarrow f(x) = 0$

(*) Nếu $f(k+1) = (k+1)^2 f(1)$ thì $f(x) = x^2 f(1)$ với mọi $x$  



#24
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

C2Trong đẳng thức cho $a=b=c=0 $ suy ra $f(0)=0 $.
Cho $c=0, b=-a $ suy ra $(f(a)-f(-a))^2=0 $, suy ra f chẵn.
Ta viết lại giả thiết: mọi $b,c $ nguyên thì $f^2(b+c)+f^2(b)+f^2(c)=2f(b)f(c) + 2[f(b)+f(c)]f(b+c) (1) $
+,Nếu $f(1)=0 $, cho$ b=c=1 $ có $f(2)=0 $, dễ thấy nếu $f(b)=f(c)=0 $ thì $f(b+c)=0 $, từ đây suy ra $f(n)=0 $ mọi n tự nhiên, suy ra f là hằng 0.
+,Nếu $f(1) $ khác $0 $. Cho $b=c=1 $ có $f(2)=4f(1) $ hoặc $f(2)=0 $.
Xét $f(2)=0 $ thì cho $c=2 $ trong $(2) $ được f tuần hoàn chu kì 2, dễ suy ra $f(x)=a $ với mọi $x $ lẻ, $f(x)=0 $ mọi x chẵn.
Nếu f(2) khác 0, ta lại xét tiếp 2 trường hợp:
+, f(4)=0 thì f tuần hoàn chu kì 4.
Thay b=1,c=3 được f(1)=f(3)
Vậy ta có hàm f(x)=a với x lẻ, $f(x)=4a $ với x chia 4 dư 2 và $f(x)= 0 $ với x chia hết cho 4.
+, $f(4) $ khác $0 $ thì $f(4)=4f(2) $
Cho b=1,c=2 suy ra hoặc $f(3)=9f(1) $ hoặc $f(3)=f(1) $.
Ta sẽ loại $f(3)=f(1) $. Thật vậy, khi đó cho $b=3,c=1 $ có $f(4)=4f(1)=f(2) $, điều này vô lí.
Vậy $f(3) $ khác $f(1) $. Đến đây mới có thể dùng quy nạp như Harryporter và suy ra $f(k)=k^2f(1) $  

C3.Đầu tiên, cho $a=b=c=0 $, ta có $3f^2(0)=6f^2(0) $ và do $f(0) \in \mathbb{Z} $ nên $f(0) = 0 $.

Cho $c=0 $ thì $f^2(a)+f^2(b) = 2f(a)f(b) $ suy ra $f(a)=f(b) $ hay $f(n)=f(-n) $ với mọi số nguyên n.

Cho $a=b=n, c = -2n, n \in \mathbb{Z}^+ $ thì
$2f^2(n)+f^2(2n) = 4f(n)f(2n)+2f^2(n) $ hay
$f^2(2n) = 4f(n)f(2n) \Leftrightarrow f(2n)(f(2n)-4f(n))=0 $ với mọi số nguyên dương n.

Ta xét 2 trường hợp:
- Nếu $f(2n) = 0 $ với mọi $n \ge 0 $ thì ta xét
$a=1, b=2n-1, c= -2n $, ta có:
$f^2(1)+f^2(2n-1)= 2f(1)f(2n-1) $, suy ra $f(1)=f(2n-1) $ với mọi $n $.
Đặt $f(1)=m $, ta được một hàm số thỏa mãn đề bài là:
$f(n)=m $ với $n $ lẻ và $f(n)=0 $ nếu $n $ chẵn.

- Nếu tồn tại $n_0 $ sao cho $f(2n_0) \neq 0 $ thì $n_0>0 $ và $f(2n_0)=4f(n_0) $.

Chọn $a=n_0, b=2n_0,c=-3n_0 $ thì
$f^2(n_0)+f^2(2n_0)+f^2(3n_0)=2f(n_0)f(2n_0)+2f(2n_ 0)f(3n_0)+2f(3n_0)f(n_0) $ hay
$9f^2(n_0)+f^2(3n_0) =10f(n_0)f(3n_0) $. Suy ra 
$f(3n_0)=f(n_0) $ hoặc $f(3n_0)=9f(n_0) $.

Đến đây mình đang nghĩ tiếp, dự đoán là cần chứng minh không xảy ra $f(3n_0)=f(n_0) $ và với $f(3n_0)=9f(n_0) $ thì có thể hàm số là $f(n)=kn^2 $ với k là hằng số nguyên.



#25
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

c1Hạ $BP\perp AX, AQ\perp BX $.
Gọi $S $ là giao điểm của $AQ $ và $BP $.
Vì $X $ là trực tâm tam giác $SAB $ nên $SX\perp AB \Rightarrow S\in CD $.
Ta có$ AL^2=AC^2=AD.AH=AQ.AS\Rightarrow \widehat{ALS}=90^0 $
$\Rightarrow SL^2=SQ.SA $
Tương tự $SK^2=SP.SB $
Từ đó $SL=SK $ mà $\widehat{MLS}=90^0=\widehat{MKS}=90^0 $ nên $ML=MK $.

C2trước hết, ta có bổ đề sau :
Cho tam giác $ABG$ trực tâm $X$, các đường cao $GD,AE,BF$. Các đường tròn đường kính $GB,GA$ cắt $AX,BX$ tại $K,L$ theo thứ tự. Khi đó $GK=GL$.
Chứng minh bổ đề.
Ta có
$$ GK^2 = GE \cdot GB = GF \cdot GA = GL^2. $$
Suy ra $GK = GL$.

Trở lại với bài toán.

Gọi $G$ là trực tâm tam giác $AXB$; $K',L'$ là giao điểm của các đường tròn đường kính $GB,GA$ với $AX,BX$ theo thứ tự.
Từ bổ đề trên dễ dàng suy ra $K \equiv K', L \equiv L'$ và $GK=GL$. Mà tứ giác $GKML$ nội tiếp đường tròn đường kính $GM$ nên ta có điều cần chứng minh. 



#26
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

 Bài 1. Cho một tập A={a1,a2,a3,a4}A={a1,a2,a3,a4} gồm 4 số nguyên dương phân biệt. Ký hiệu tổng a1+a2+a3+a4a1+a2+a3+a4 bởi sAsA. Đặt nAnA là số các cặp (i;j)(i;j) với 1≤i<j≤41≤i<j≤4 và ai+ajai+aj là ước số của sAsA. Tìm tất cả các tập AA sao cho nAnA đạt giá trị lớn nhất có thể.
C1Bài 1. Ngon.
$s_A=a_1+a_2+a_3+a_4 $Có tất cả 6 cặp $a_i+a_j=a_1+a_2,a_2+a_3,a_3+a_4,a_1+a_4,a_2+a_3,a_ 2+a_4 $
Do 4 số nguyên dương phân biệt nên mình sắp lại thứ tự có $a_1<a_2<a_3<a_4 $.Khi đó $a_3+a_4|s_A $ khi $a_3+a_4|a_1+a_2 $ vô lý,cái $a_2+a_4 $ cũng thế.
Do vậy $n_A\leq 4 $
Có hệ $\begin{cases}
& a_1+a_2|s_A=a_1+a_2+a_3+a_4 \\ 
& a_1+a_3|s_A=a_1+a_2+a_3+a_4\\ 
& a_1+a_4|s_A=a_1+a_2+a_3+a_4\\ 
& a_2+a_3|s_A=a_1+a_2+a_3+a_4
\end{cases}
\rightarrow
\begin{cases}
& a_1+a_2|a_3+a_4 \\ 
& a_1+a_3|a_2+a_4\\ 
& a_1+a_4|a_2+a_3\\ 
& a_2+a_3|a_1+a_4
\end{cases}
\rightarrow
\begin{cases}
& a_1+a_2|a_3+a_4 \\ 
& a_1+a_3|a_2+a_4\\ 
& a_1+a_4=a_2+a_3\\ 
& a_1<a_2<a_3<a_4\\ 
\end{cases}
$
Cái này dễ giải ra tính được 4 số theo 1 số còn lại.Mathlinks ra đáp số ($x,5x,7x,11x $) và $(x,11x,19x,29x) $  
C2Đóng góp bài 1:
Giải : Ta gọi Hai cặp trong là bù nhau nếu tổng bằng $s_a $. 
Thấy rằng Hai cặp bù nhau, hoặc bằng nhau, hoặc chỉ có một trong chúng thuộc $n_a $.
Gs $a_1<a_2<a_3<a_4 $. Thì hoặc $a_1+a_2 $ hoặc $a_3+a_4 $ thuộc $n_a $.
$a_2+a_4 $ và $a_1+a_3 $ cũng vậy.
Do đó $n_a $ có tối đa 4 phần tử.
Điều này xảy ra khi : $a_1+a_4=a_2+a_3 $.
Đặt $a_1=x, a_2= x+d, a_3=y, a_4=y+d $.
Ta có : $a_1+a_2= 2x+d $ chia hết $2x+2y+2d $ (1)
$a_1+a_3= x+y $ chia hết $2d $ nhưng $y> x+d > d $. Nên $x+y =2d $.
(1) suy ra $2x+d $ chia hết $6d $. Vậy $2x+d=3d $ do $x<d $. Vậy $x= d:2 $.
Đáp số là $x, 3x, 5x, 7x $.  

Bài 2. Một tập hữu hạn SS gồm ít nhất 2 điểm trên mặt phẳng. Giả sử không có 3 điểm nào của SS thẳng hàng. Một cối xay gió là một quá trình bắt đầu với một đường thẳng ℓℓ đi qua một điểm duy nhất PSPS. Đường thẳng quay theo chiều kim đồng hồ quanh PP cho đến khi gặp một điểm khác cũng thuộc SS. Điểm mới này, QQ, là trục quay mới, và đường thẳng ℓℓ tiếp tục quay theo chiều kim đồng hồ đến khi gặp một điểm khác của SS. Quá trình này lặp lại vô hạn lần.
Chứng minh rằng ta có thể chọn một điểm PSPS và đường thẳng ℓℓ đi qua PP sao cho mỗi điểm của SS được sử dụng làm trục quay vô hạn lần.
Bài 2:
Ta gọi một đường thằng $d $ đi qua điểm $A $ và một điểm $B $ là tốt với $A $ nếu quay $d $ quanh $A $ một góc $\alpha $ nhỏ (chiều quay kim đồng hồ) thì hai nửa mặt phẳng chứa số điểm chênh lệch nhau không quá $1 $.

Nhận xét 1: Mỗi điểm $A $ thì có ít nhất $1 $ đường thẳng tốt đi qua. 

Bây giờ ta sẽ chứng minh là với cách chọn điểm $A $ bất kì và đường thẳng $ l $ là đường thẳng tốt qua $A $ 

Nhận xét 2: Giả sử tại bước thứ $k $, ta quay tại điểm $A $ và đường thẳng $l $ là đường thẳng tốt thì ta sẽ đến tới điểm $B $, đường thẳng $l $ sẽ trở thành đường thẳng $BA $ và $BA $ là tốt
Chứng minh:

Thật vậy ta giả sử $l $ chứa $2 $ điểm $A $ và $X $( song song với đường ngang). Số điểm nằm ở mặt phẳng phía trên là $a $, phía dưới là $b $. Ta có do $l $ tốt nên $|a+1-b|\le 1 $. Nếu $B $ ở mặt phẳng phía trên thì khi quay đường $BA $ một góc $\alpha $ nhỏ chia mặt phẳng thành hai phần có số điểm chênh nhau là $|a+1-b|\le 1 $. Nếu $B $ ở phía dưới thì cũng dễ thấy khi quay $BA $ quanh $B $ một góc $\alpha $ nhỏ đi thì số điểm chênh lệch ở hai nửa mặt phẳng là $|a+1-b|\le 1 $. Do đó $BA $ là đường thẳng tốt. Nhận xét được chứng minh.

Nhận xét 3: Mỗi điểm $X $ thuộc $S $ sẽ được ghé đến ít nhất một lần không phụ thuộc vào điểm đầu ( và do đó được ghé đến vô hạn lần).

Ta biết rằng quá trình quay đường thẳng $l $ theo chiều kim đồng hồ là một quá trình vô hạn lần và sẽ có lúc đường thẳng $l $ song song với đường thẳng tốt $d $ đi qua $X $ và điểm $M $. Nếu $l $ không trùng $d $, xét điểm cuối cùng mà $l $ đi qua trước khi song song với $X $ là $N,Y $. Dễ thấy là $M,X $ khác với $N,Y $Tuy nhiên dẽ thấy là sẽ có ít nhất một trong hai đường thẳng $NY $ và $MX $ không tốt. ( chỉ cần so sánh số điểm chênh lệch ở các nửa mặt phẳng là ok)

Vậy bài toán được chứng minh  

 

Bài 3. Cho f:R→Rf:R→R thỏa mãn
 

f(x+y)≤yf(x)+f(f(x))f(x+y)≤yf(x)+f(f(x))

với mọi số thực x,yx,y. Chứng minh rằng f(x)=0x≤0f(x)=0x≤0.
C1Bài 3:
[M]f(x+y) \le yf(x)+f(f(x))[/M] (1)
Thay [M]y=0[/M] ta có : [M]f(x) \le f(f(x))[/M]
Kí hiệu [M]D_f[/M] là tập giá trị của [M]f [/M]. Với [M]x \in D_f[/M], thay [M]y= f(x)-x[/M] không âm ta có [M]f(f(x)) \le yf(x)+f(f(x))[/M] nên [M]f(x)[/M] không âm với [M]x \in D_f[/M] nói cách khác [M]f(f(x))[/M] không âm với mọi [M]x [/M].
Bây giờ, giả sử tồn tại [M]x[/M] mà [M]f(x)>0 [/M], cho y tiến tới âm vô cùng thì sẽ tồn tại [M]e[/M] mà [M]f(x)<0[/M] với mọi [M]x \le e[/M]
tương tự nếu có [M]f(x)<0[/M] thì [M]f(x)<0[/M] với mọi [M]x[/M] đủ lớn.
Chú ý rằng nếu [M]f(x)<0[/M] thì [M]x[/M] không thuộc tập giá trị của [M]f[/M]
TH1: [M]f[/M] nhận cả giá trị âm dương. Thì [M]D_f[/M] là tập bị chặn . Mâu thuẫn.
TH2: [M]f[/M] chỉ nhận giá trị dương cũng mâu thuẫn 
Vậy [M]f[/M] chỉ nhận giá trị không dương .
Như thế [M]f(f(x))=0[/M] với mọi [M]x[/M]
suy ra [M]f(0)=f(f(f(x)))=0[/M]
Ta có [M]f(x+y) \le yf(x)[/M]
Cho [M]y=-x[/M] suy ra [M]-xf(x) \ge 0[/M] nên [M]f(x)[/M] không âm với [M]x[/M] không âm 
Suy ra [M]f(x)=0[/M] với [M]x[/M] không âm.

C2 Bài 3: $f(x+y) \leq yf(x)+f(f(x)). $ (*)
+ Cho $y=0 $, có $f(x)\leq f(f(x)) \; $ (1).
+ Cho $y=f(x)-x $, có $f(f(x)) \leq f(x)[f(x)-x]+f(f(x)) $, hay là $0 \leq f(x)[f(x)-x] \; $ (2).
a) Ta sẽ chứng minh $f(x)\leq 0 $ với mọi $x $. Thật vậy, nếu có $x $ sao cho $f(x)>0 $ thì
$f(f(y))=f(f(y)-x+x) \leq [f(y)-x]f(x)+f(f(x)) = [f(y-x+x)-x]f(x)+f(f(x)) \leq [(y-x)f(x)+f(f(x))-x]f(x)+f(f(x)). $
Ta có $f(f(y))\leq y.f^2(x)+h(x) $ với mọi $y $ (3) ($h(x) $ là hàm xác định từ biểu thức trên).
Chú ý là: từ (1) và (2), ta thấy $0 \leq f(f(x))[f(f(x))-f(x)] $ và $f(x)\leq f(f(x)) $, nên nếu $f(f(x))<0 $ thì phải có $f(f(x))=f(x) $.
Như vậy, từ (3) suy ra: khi $y $ tới âm vô cùng thì $f(y)=f(f(y)) $ cũng tới âm vô cùng.
Thay $y=-x $ vào (*), có $f(0)\leq -xf(x)+f(f(x))=f(x)(-x+1) $ (khi $x $ đủ nhỏ thì $f(x)=f(f(x)) $). Cho $x $ tới âm vô cùng thì vế phải cũng tới âm vô cùng, trong khi vế trái cố định. Mâu thuẫn.
b) Ta chứng minh rằng tồn tại N để với mọi $x<N $ thì $f(x)=0. $
Phản chứng, nếu không tồn tại N thì từ ý a), ta suy ra tồn tại dãy $\{x_n\} $ dần tới âm vô cùng sao cho $f(x_n)<0 $. Như vậy, từ (2) ta suy ra $f(x)-x\leq 0 $.
Lại thay $y=-x $ vào (*), có $f(0) \leq -xf(x)+f(f(x)) \leq -xf(x) $. Chọn dãy $\{x_n\} $ tiến tới âm vô cùng thay vào, ta có vế trái cố định, vế phải ra âm vô cùng. Mâu thuẫn.
c) Xét $x<N $, ta có $0 \geq f(0)=f(f(x)) \geq f(x) =0 $. Vậy $f(0)=0 $.
d) Xét $x<0 $, có $0=f(0)=f(-x+x) \leq -xf(x)+f(f(x))\leq -xf(x) \leq 0 $. Dấu bằng xảy ra khi $f(x)=0 $.
KL: $f(x)=0 $ với mọi $x\leq 0 $.  

 

Bài 4

Giả sử n>0n>0 là một số nguyên. Cho một cái cân hai đĩa và nn quả cân với trọng lượng là 20,21,...,2n−120,21,...,2n−1. Ta muốn đặt lên cái cân mỗi một trong nn quả cân, lần lượt từng quả một, theo cách để bảo đảm đĩa cân bên phải không bao giờ nặng hơn đĩa cân bên trái. Ở mỗi bước ta chọn một trong các quả cân chưa được đặt lên cân, rồi đặt nó hoặc vào đĩa bên trái, hoặc vào đĩa bên phải, cho đến khi tất cả các quả cân đều đã được đặt lên cân. Xác định xem có bao nhiêu cách để thực hiện được mục đích đề ra.

Bài 5

Cho hàm f:Z→Z+f:Z→Z+.Giả sử rằng với hai số nguyên m,nm,n bất kì, hiệu f(m)−f(n)f(m)−f(n) chia hết cho f(m−n).f(m−n).
Chứng minh rằng với mọi số nguyên m,nm,n thỏa mãn f(m)≤f(n)f(m)≤f(n),thì ta có f(n)f(n) chia hết cho f(m)f(m)

Bài 6
Cho tam giác nhọn ABCABC nội tiếp đường tròn ΓΓ.Gọi ll là tiếp tuyến tới TT,và la,lb,lcla,lb,lc là các đường thẳng đối xứng với ll qua BC,CA,ABBC,CA,ABtương ứng.Chứng tỏ rằng đường tròn ngoại tiếp tam giác xác định bởi la,lb,lcla,lb,lc tiếp xúc với đường tròn ΓΓ. 
 

Bài viết đã được chỉnh sửa nội dung bởi Phạm Quang Toàn: 27-07-2011 - 18:07


Bài viết đã được chỉnh sửa nội dung bởi toanhoc2017: 23-07-2019 - 12:02


#27
Sin99

Sin99

    Thượng sĩ

  • Thành viên
  • 238 Bài viết

 Bài 1. Cho một tập A={a1,a2,a3,a4}A={a1,a2,a3,a4} gồm 4 số nguyên dương phân biệt. Ký hiệu tổng a1+a2+a3+a4a1+a2+a3+a4 bởi sAsA. Đặt nAnA là số các cặp (i;j)(i;j) với 1≤i<j≤41≤i<j≤4 và ai+ajai+aj là ước số của sAsA. Tìm tất cả các tập AA sao cho nAnA đạt giá trị lớn nhất có thể.
C1Bài 1. Ngon.
$s_A=a_1+a_2+a_3+a_4 $Có tất cả 6 cặp $a_i+a_j=a_1+a_2,a_2+a_3,a_3+a_4,a_1+a_4,a_2+a_3,a_ 2+a_4 $
Do 4 số nguyên dương phân biệt nên mình sắp lại thứ tự có $a_1<a_2<a_3<a_4 $.Khi đó $a_3+a_4|s_A $ khi $a_3+a_4|a_1+a_2 $ vô lý,cái $a_2+a_4 $ cũng thế.
Do vậy $n_A\leq 4 $
Có hệ $\begin{cases}
& a_1+a_2|s_A=a_1+a_2+a_3+a_4 \\ 
& a_1+a_3|s_A=a_1+a_2+a_3+a_4\\ 
& a_1+a_4|s_A=a_1+a_2+a_3+a_4\\ 
& a_2+a_3|s_A=a_1+a_2+a_3+a_4
\end{cases}
\rightarrow
\begin{cases}
& a_1+a_2|a_3+a_4 \\ 
& a_1+a_3|a_2+a_4\\ 
& a_1+a_4|a_2+a_3\\ 
& a_2+a_3|a_1+a_4
\end{cases}
\rightarrow
\begin{cases}
& a_1+a_2|a_3+a_4 \\ 
& a_1+a_3|a_2+a_4\\ 
& a_1+a_4=a_2+a_3\\ 
& a_1<a_2<a_3<a_4\\ 
\end{cases}
$
Cái này dễ giải ra tính được 4 số theo 1 số còn lại.Mathlinks ra đáp số ($x,5x,7x,11x $) và $(x,11x,19x,29x) $  
C2Đóng góp bài 1:
Giải : Ta gọi Hai cặp trong là bù nhau nếu tổng bằng $s_a $. 
Thấy rằng Hai cặp bù nhau, hoặc bằng nhau, hoặc chỉ có một trong chúng thuộc $n_a $.
Gs $a_1<a_2<a_3<a_4 $. Thì hoặc $a_1+a_2 $ hoặc $a_3+a_4 $ thuộc $n_a $.
$a_2+a_4 $ và $a_1+a_3 $ cũng vậy.
Do đó $n_a $ có tối đa 4 phần tử.
Điều này xảy ra khi : $a_1+a_4=a_2+a_3 $.
Đặt $a_1=x, a_2= x+d, a_3=y, a_4=y+d $.
Ta có : $a_1+a_2= 2x+d $ chia hết $2x+2y+2d $ (1)
$a_1+a_3= x+y $ chia hết $2d $ nhưng $y> x+d > d $. Nên $x+y =2d $.
(1) suy ra $2x+d $ chia hết $6d $. Vậy $2x+d=3d $ do $x<d $. Vậy $x= d:2 $.
Đáp số là $x, 3x, 5x, 7x $.  

Bài 2. Một tập hữu hạn SS gồm ít nhất 2 điểm trên mặt phẳng. Giả sử không có 3 điểm nào của SS thẳng hàng. Một cối xay gió là một quá trình bắt đầu với một đường thẳng ℓℓ đi qua một điểm duy nhất PSPS. Đường thẳng quay theo chiều kim đồng hồ quanh PP cho đến khi gặp một điểm khác cũng thuộc SS. Điểm mới này, QQ, là trục quay mới, và đường thẳng ℓℓ tiếp tục quay theo chiều kim đồng hồ đến khi gặp một điểm khác của SS. Quá trình này lặp lại vô hạn lần.
Chứng minh rằng ta có thể chọn một điểm PSPS và đường thẳng ℓℓ đi qua PP sao cho mỗi điểm của SS được sử dụng làm trục quay vô hạn lần.
Bài 2:
Ta gọi một đường thằng $d $ đi qua điểm $A $ và một điểm $B $ là tốt với $A $ nếu quay $d $ quanh $A $ một góc $\alpha $ nhỏ (chiều quay kim đồng hồ) thì hai nửa mặt phẳng chứa số điểm chênh lệch nhau không quá $1 $.

Nhận xét 1: Mỗi điểm $A $ thì có ít nhất $1 $ đường thẳng tốt đi qua. 

Bây giờ ta sẽ chứng minh là với cách chọn điểm $A $ bất kì và đường thẳng $ l $ là đường thẳng tốt qua $A $ 

Nhận xét 2: Giả sử tại bước thứ $k $, ta quay tại điểm $A $ và đường thẳng $l $ là đường thẳng tốt thì ta sẽ đến tới điểm $B $, đường thẳng $l $ sẽ trở thành đường thẳng $BA $ và $BA $ là tốt
Chứng minh:

Thật vậy ta giả sử $l $ chứa $2 $ điểm $A $ và $X $( song song với đường ngang). Số điểm nằm ở mặt phẳng phía trên là $a $, phía dưới là $b $. Ta có do $l $ tốt nên $|a+1-b|\le 1 $. Nếu $B $ ở mặt phẳng phía trên thì khi quay đường $BA $ một góc $\alpha $ nhỏ chia mặt phẳng thành hai phần có số điểm chênh nhau là $|a+1-b|\le 1 $. Nếu $B $ ở phía dưới thì cũng dễ thấy khi quay $BA $ quanh $B $ một góc $\alpha $ nhỏ đi thì số điểm chênh lệch ở hai nửa mặt phẳng là $|a+1-b|\le 1 $. Do đó $BA $ là đường thẳng tốt. Nhận xét được chứng minh.

Nhận xét 3: Mỗi điểm $X $ thuộc $S $ sẽ được ghé đến ít nhất một lần không phụ thuộc vào điểm đầu ( và do đó được ghé đến vô hạn lần).

Ta biết rằng quá trình quay đường thẳng $l $ theo chiều kim đồng hồ là một quá trình vô hạn lần và sẽ có lúc đường thẳng $l $ song song với đường thẳng tốt $d $ đi qua $X $ và điểm $M $. Nếu $l $ không trùng $d $, xét điểm cuối cùng mà $l $ đi qua trước khi song song với $X $ là $N,Y $. Dễ thấy là $M,X $ khác với $N,Y $Tuy nhiên dẽ thấy là sẽ có ít nhất một trong hai đường thẳng $NY $ và $MX $ không tốt. ( chỉ cần so sánh số điểm chênh lệch ở các nửa mặt phẳng là ok)

Vậy bài toán được chứng minh  

 

Bài 3. Cho f:R→Rf:R→R thỏa mãn
 

f(x+y)≤yf(x)+f(f(x))f(x+y)≤yf(x)+f(f(x))

với mọi số thực x,yx,y. Chứng minh rằng f(x)=0x≤0f(x)=0x≤0.
C1Bài 3:
[M]f(x+y) \le yf(x)+f(f(x))[/M] (1)
Thay [M]y=0[/M] ta có : [M]f(x) \le f(f(x))[/M]
Kí hiệu [M]D_f[/M] là tập giá trị của [M]f [/M]. Với [M]x \in D_f[/M], thay [M]y= f(x)-x[/M] không âm ta có [M]f(f(x)) \le yf(x)+f(f(x))[/M] nên [M]f(x)[/M] không âm với [M]x \in D_f[/M] nói cách khác [M]f(f(x))[/M] không âm với mọi [M]x [/M].
Bây giờ, giả sử tồn tại [M]x[/M] mà [M]f(x)>0 [/M], cho y tiến tới âm vô cùng thì sẽ tồn tại [M]e[/M] mà [M]f(x)<0[/M] với mọi [M]x \le e[/M]
tương tự nếu có [M]f(x)<0[/M] thì [M]f(x)<0[/M] với mọi [M]x[/M] đủ lớn.
Chú ý rằng nếu [M]f(x)<0[/M] thì [M]x[/M] không thuộc tập giá trị của [M]f[/M]
TH1: [M]f[/M] nhận cả giá trị âm dương. Thì [M]D_f[/M] là tập bị chặn . Mâu thuẫn.
TH2: [M]f[/M] chỉ nhận giá trị dương cũng mâu thuẫn 
Vậy [M]f[/M] chỉ nhận giá trị không dương .
Như thế [M]f(f(x))=0[/M] với mọi [M]x[/M]
suy ra [M]f(0)=f(f(f(x)))=0[/M]
Ta có [M]f(x+y) \le yf(x)[/M]
Cho [M]y=-x[/M] suy ra [M]-xf(x) \ge 0[/M] nên [M]f(x)[/M] không âm với [M]x[/M] không âm 
Suy ra [M]f(x)=0[/M] với [M]x[/M] không âm.

C2 Bài 3: $f(x+y) \leq yf(x)+f(f(x)). $ (*)
+ Cho $y=0 $, có $f(x)\leq f(f(x)) \; $ (1).
+ Cho $y=f(x)-x $, có $f(f(x)) \leq f(x)[f(x)-x]+f(f(x)) $, hay là $0 \leq f(x)[f(x)-x] \; $ (2).
a) Ta sẽ chứng minh $f(x)\leq 0 $ với mọi $x $. Thật vậy, nếu có $x $ sao cho $f(x)>0 $ thì
$f(f(y))=f(f(y)-x+x) \leq [f(y)-x]f(x)+f(f(x)) = [f(y-x+x)-x]f(x)+f(f(x)) \leq [(y-x)f(x)+f(f(x))-x]f(x)+f(f(x)). $
Ta có $f(f(y))\leq y.f^2(x)+h(x) $ với mọi $y $ (3) ($h(x) $ là hàm xác định từ biểu thức trên).
Chú ý là: từ (1) và (2), ta thấy $0 \leq f(f(x))[f(f(x))-f(x)] $ và $f(x)\leq f(f(x)) $, nên nếu $f(f(x))<0 $ thì phải có $f(f(x))=f(x) $.
Như vậy, từ (3) suy ra: khi $y $ tới âm vô cùng thì $f(y)=f(f(y)) $ cũng tới âm vô cùng.
Thay $y=-x $ vào (*), có $f(0)\leq -xf(x)+f(f(x))=f(x)(-x+1) $ (khi $x $ đủ nhỏ thì $f(x)=f(f(x)) $). Cho $x $ tới âm vô cùng thì vế phải cũng tới âm vô cùng, trong khi vế trái cố định. Mâu thuẫn.
b) Ta chứng minh rằng tồn tại N để với mọi $x<N $ thì $f(x)=0. $
Phản chứng, nếu không tồn tại N thì từ ý a), ta suy ra tồn tại dãy $\{x_n\} $ dần tới âm vô cùng sao cho $f(x_n)<0 $. Như vậy, từ (2) ta suy ra $f(x)-x\leq 0 $.
Lại thay $y=-x $ vào (*), có $f(0) \leq -xf(x)+f(f(x)) \leq -xf(x) $. Chọn dãy $\{x_n\} $ tiến tới âm vô cùng thay vào, ta có vế trái cố định, vế phải ra âm vô cùng. Mâu thuẫn.
c) Xét $x<N $, ta có $0 \geq f(0)=f(f(x)) \geq f(x) =0 $. Vậy $f(0)=0 $.
d) Xét $x<0 $, có $0=f(0)=f(-x+x) \leq -xf(x)+f(f(x))\leq -xf(x) \leq 0 $. Dấu bằng xảy ra khi $f(x)=0 $.
KL: $f(x)=0 $ với mọi $x\leq 0 $.  

 

Bài 4

Giả sử n>0n>0 là một số nguyên. Cho một cái cân hai đĩa và nn quả cân với trọng lượng là 20,21,...,2n−120,21,...,2n−1. Ta muốn đặt lên cái cân mỗi một trong nn quả cân, lần lượt từng quả một, theo cách để bảo đảm đĩa cân bên phải không bao giờ nặng hơn đĩa cân bên trái. Ở mỗi bước ta chọn một trong các quả cân chưa được đặt lên cân, rồi đặt nó hoặc vào đĩa bên trái, hoặc vào đĩa bên phải, cho đến khi tất cả các quả cân đều đã được đặt lên cân. Xác định xem có bao nhiêu cách để thực hiện được mục đích đề ra.

Bài 5

Cho hàm f:Z→Z+f:Z→Z+.Giả sử rằng với hai số nguyên m,nm,n bất kì, hiệu f(m)−f(n)f(m)−f(n) chia hết cho f(m−n).f(m−n).
Chứng minh rằng với mọi số nguyên m,nm,n thỏa mãn f(m)≤f(n)f(m)≤f(n),thì ta có f(n)f(n) chia hết cho f(m)f(m)

Bài 6
Cho tam giác nhọn ABCABC nội tiếp đường tròn ΓΓ.Gọi ll là tiếp tuyến tới TT,và la,lb,lcla,lb,lc là các đường thẳng đối xứng với ll qua BC,CA,ABBC,CA,ABtương ứng.Chứng tỏ rằng đường tròn ngoại tiếp tam giác xác định bởi la,lb,lcla,lb,lc tiếp xúc với đường tròn ΓΓ. 
 

Bài viết đã được chỉnh sửa nội dung bởi Phạm Quang Toàn: 27-07-2011 - 18:07

Bạn copy rồi past lại là có ý gì  ? 



#28
toanhoc2017

toanhoc2017

    Thiếu úy

  • Banned
  • 628 Bài viết

 Ngày thi thứ nhất 9/04/2011
Thời gian làm bài 240 phút


Bài 1(5 điểm)
Tại điểm (1;1) của mặt phẳng tọa độ Oxy có một con cào cào.Từ điểm đó,con cào cào chỉ nhảy đến các điểm nguyên dương khác theo quy tắc: từ điểm nguyên dương A,con cào cào nhảy đến điểm nguyên dương B nếu tam giác AOB có diện tích bằng $\dfrac{1}{2} $.
1/Tìm tất cả các điểm nguyên dương (m;n) mà con cào cào có thể nhảy đến sau một số hữu hạn bước,xuất phát từ điểm (1;1).
2/Giả sử (m;n) là một điểm nguyên dương có tính chất đã nêu ở câu 1/.Chứng minh rằng tồn tại một cách nhảy của con cào cào từ điểm (1;1) đến điểm (m;n) mà số bước nhảy không vượt quá |m-n|.
(Điểm (x;y) gọi là điểm nguyên dương nếu x và y là các số nguyên dương).

Bài 2(7,0 điểm)
Trên mặt phẳng cho (O ) và một điểm A nằm ngoài đường tròn đó.Qua A kẻ các tiếp tuyến tới (O),gọi B,C là tiếp điểm.Xét một điểm Pdi động trên tia đối của tia BA,Q là điểm di động trên tia đối của tia CA sao cho đường thẳng PQ tiếp xúc với (O).Qua P kẻ đường thằng song song với AC,cắt BC tại E.Qua Q kẻ đường thẳng song song với AB cắt BC tại F.Chứng minh rằng
1/Đường thẳng EQ luôn đi qua một điểm cố định M và FP luôn đi qua một điểm cố định N.
2/Tích PM.QN không đổi.

Bài 3(8 điểm)
Cho số nguyên $n\geq 3 $.Xét $n $ số thực $x_1,x_2,\ldots,x_n $ thỏa mãn đồng thời các điều kiện sau:

i/ $x_1\geq x_2\geq x_2\geq \ldots \geq x_n $
ii/ $x_1+x_2+\ldots+x_n=0 $ 
iii/$x_1^2+x_2^2+\ldots+x_n^2=n(n-1) $ 

Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng $S=x_1+x_2 $  

Ngày thi thứ hai 10/4/2011
Thời gian làm bài 240 phút

Bài 4 (6,0 điểm)
Cho dãy ${a_n} $ thỏa mãn $a_0=1,a_1=3 $ và $a_{n+2}=1+\left \lfloor \frac{a^2_{n+1}}{a_n} \right \rfloor $ với mọi $n\geq0 $
Chứng minh rằng
$a_n.a_{n+2}-a^2_{n+1}=2^n $ với mọi số tự nhiên $n $

Bài 5(7,0 điểm)

Tìm tất cả các số nguyên dương $n $ sao cho $A=2^{n+2}.(2^n-1)-8.3^n+1 $ là số chính phương.

Bài 6(7,0 điểm)
Cho n là một số nguyên lớn hơn 1.Có n học sinh ngồi quanh một chiếc bàn tròn,mỗi em có một số kẹo (có thể có em không có một chiếc kẹo nào) và tổng số kẹo của tất cả các em là một bội của n.Các em thực hiện việc chuyển kẹo như sau:
Với số kẹo mỗi em có lúc đầu,có ít nhất một em có nhiều kẹo hơn bạn ngồi bên phải mình thì một em (tùy ý) trong những em như thế chuyển một chiếc kẹo của mình cho bạn ngồi ngay bên phải.Với số kẹo mỗi em có sau lần chuyển thứ nhất,nếu có ít nhất một em có nhiều kẹo hơn bạn ngồi bên phải thì một em (tùy ý) trong số những em như thế lại tiếp tục chuyển 1 chiếc lẹo của mình cho bạn ngồi bên phải.Quá trình chuyển kẹo cứ thế được tiếp tục.
Chứng minh rằng sau một số hữu hạn lần chuyển kẹo như vậy,tất cả các em đều có số kẹo như nhau.






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh