Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG VÀ MỘT SỐ ĐỊNH LÍ ,BỔ ĐỀ SỐ HỌC


  • Please log in to reply
Chưa có bài trả lời

#1 tritanngo99

tritanngo99

    Đại úy

  • Thành viên
  • 1756 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:$\href{https://www.youtube.com/watch?v=YNlEDsIQxWU}{Đây}$

Đã gửi 02-10-2019 - 07:39

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG VÀ MỘT SỐ ĐỊNH LÍ ,BỔ ĐỀ SỐ HỌC
 

Về số mũ đúng : Cho $p$ là số nguyên tố ,$a$ là số nguyên và $\alpha$ là số tự nhiên. Ta nói $p^{\alpha}$ là lũy thừa đúng của $a$ và $\alpha$ là số mũ đúng của $p$ trong khai triển của $\alpha$ nếu $p^{\alpha}|a$ và $p^{\alpha+1} \not | a$
Khi đó ta viết $p^{\alpha} ||a$ hay $v_p(a)=\alpha$
Ví dụ $v_3(63)=2$ vì $63=3^2.7$
Một số tính chất về cái này : Cho $x,y,z$ là các số nguyên khi đó
i) $v_p(xy)=v_p(x)+v_p(y)$
ii) $v_p(x^n)=n.v_p(x)$
iii) $v_p(x+y) \ge min\{v_p(x),v_p(y)\}$ . Xảy ra khi và chỉ khi $v_p(x) \ne v_p(y)$
iv) $v_p(gcd(|x|,|y|,|z|))=min\{v_p(x),v_p(y),v_p(z)\}$
v) $v_p(lcm(|x|,|y|,|z|))=max\{v_p(x),v_p(y),v_p(z)\}$
 Một số bổ đề : Bổ đề 1 : Cho $x,y$ là các số nguyên và $n$ là một số nguyên dương. Cho $p$ là số nguyên tố bất kì sao cho $gcd(n,p)=1,p|x-y,x \not | p ,y \not |p$
Khi đó $v_p(x^n-y^n)=v_p(x-y)$
Bổ đề 2 :Cho $x,y$ là các số nguyên và $n$ là một số nguyên dương lẻ. Cho $p$ là số nguyên tố bất kì sao cho $gcd(n,p)=1,p|x+y,x \not | p ,y \not |p$
Khi đó $v_p(x^n+y^n)=v_p(x+y)$
Bổ đề 3 : Cho $x,y$ là các số nguyên và $n$ là một số nguyên dương . Cho $p$ là số nguyên tố ($p>2$) sao cho $p|x-y,x \not | p ,y \not |p$
Khi đó $v_p(x^n-y^n)=v_p(x-y)+v_p(n)$
Bổ đề 4 : Cho $x,y$ là các số nguyên và $n$ là một số nguyên dương  lẻ . Cho $p$ là số nguyên tố ($p>2$) sao cho $p|x+y,x \not | p ,y \not |p$
Khi đó $v_p(x^n+y^n)=v_p(x+y)+v_p(n)$
Bổ đề 5 : Cho $x,y$ là hai số nguyên lẻ sao cho $4|x-y$ khi đó $v_2(x^n-y^n)=v_2(x-y)+v_2(n)$
Bổ đề 6 : Cho $x,y$ là hai số nguyên lẻ và $n$ là số nguyên dương chẵn . Khi đó
$v_2(x^n-y^n)=v_2(x-y)+v_2(x+y)+v_2(n)-1$
MỘT SỐ ĐỊNH LÍ ,BỔ ĐỀ SỐ HỌC  (mấy cái Wilson,Fermat mình sẽ không đăng vì đã có nhiều)
Ta định nghĩa 1 : Cho số nguyên dương $n$. Số nguyên $a$ được gọi là thặng dư bình phương mod $n$ hay (số chính phương mod n) nếu tồn tại số nguyên $x$ sao cho $x^2 \equiv a \pmod{n}$
Định nghĩa 2 : Giả sử $p$ là một số nguyên tố lẻ , $a$ là một số nguyên. Kí hiệu La-Grang (Legendre) $(\frac{a}{p})$ được xá định như sau
$(a/p)=1$ nếu $gcd(a,p)=1$ và $a$ là số chính phương mod $p$
$(a/p)-1$ nếu $gcd(a,p)=1$ và $a$ không là số chính phương
$(a/p)=0$ nếu $p|a$
Định lí 1 : Giả sử $p$ là số nguyên tố lẻ . Khi đó phương trình $x^2 \equiv a \pmod{p}$
i) Chỉ có nghiệm khi $x \equiv 0 \pmod{p}$ với $a=0$
ii) Vô nghiệm hoặc đúng hai nghiệm nếu $p \not |a$
Chú ý : Định lí này không đúng với $p=2$
Hệ quả : Giả sử $p$ là số nguyên tố lẻ . Khi đó trong hệ thặng dư đầy đủ $\{1,2,..,p-1\}$ có đúng $\frac{p-1}{2}$ thặng dư bình phương và $\frac{p-1}{2}$ không thặng dư bình phương mod p
Định lí 2 (Euler's criterion) Giả sử $p$ là số nguyên tố lẻ ,$gcd(a,p)=1$ . Khi đó $(a/p) \equiv a^{\frac{p-1}{2}} \pmod{p}$
Định lí 3 : Cho $p$ là số nguyên tố lẻ và $a,b$ là các số nguyên dương sao cho $gcd(a,p)=gcd(b,p)=1$ Khi đó
i) Nếu $p|a-b$ thì $(\frac{a}{p})=(\frac{b}{p})$
ii) $(\frac{a}{p})(\frac{b}{p})=(\frac{ab}{p})$
iii) $(\frac{a^2}{p})=1$
iv) $(\frac{-1}{p})=1$ khi $p \equiv 1 \pmod{4}$
$(\frac{-1}{p})=-1$ khi $p \equiv 3 \pmod{4}$
Định lí 4 : Giả sử $gcd(x,y)=1$ , $a,b,c$ là các số nguyên $p$ là ước nguyên tố của $ax^2+bxy+cy^2$ , $p$ không là ước của $abc$ thì $A=b^2-4ac$ là thặng dư bậc hai mod $p$
Đặt biệt nếu $p$ là ước của $x^2-Ay^2$ và $gcd(x,y)=1$ thì $A$ là thặng dư bậc hai mod $p$
Bổ đề Gauss : Giả sử $p$ là số nguyên tố lẻ ,$a$ là số nguyên không chia hết cho $p$
Nếu trong số các thặng dư bé nhất của các số nguyên $a,2a,3a,..,\frac{p-1}{2}$ có $s$ thặng dư lớn hơn $\frac{p}{2}$ thì $(\frac{a}{p})=(-1)^s$
 Luật tương hỗ Gauss : Cho $p,q$ là hai số nguyên tố lẻ phân biệt. Khi đó
i) Nếu có ít nhất một trong hai số có dạng $4k+1$ thì $p$ là số chính phương (mod p) khi và chỉ khi $q$ là số chính phương (mod p)
ii) Nếu cả hai số đều có dạng $4k+3$ thì $p$ là số chính phương (mod $q$) khi và chỉ khi $q$ là số chính phương (mod p)
Kí hiệu Jacobi : Định nghĩa 3 : Cho $n$ là số nguyên dương lẻ với phân tích tiêu chuẩn
$n=p_1.p_2..p_k$ . Với $gcd(a,n)=1$ thì ta định nghĩa các kí hiệu Jacobi như sau
$(\frac{a}{n})=(\frac{a}{p_1})(\frac{a}{p_2})...(\frac{a}{p_k})$
Luật tương hỗ : Nếu $n,m$ là các số nguyên tố lẻ nguyên tố cùng nhau thì
$(\frac{n}{m})(\frac{m}{n})=(-1)^{\frac{(n-1)(m-1)}{4}}$

Nguồn: http://numbertheorynmq.blogspot.com


Yêu quê hương thương nhân loại núi sông cảm mến
Hiểu Thánh triết biết nghĩa nhân trời đất chở che




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh