Đến nội dung

Hình ảnh

Mở rộng và hạn chế ideal


  • Please log in to reply
Chủ đề này có 1 trả lời

#1
nmd27082001

nmd27082001

    Lính mới

  • Thành viên mới
  • 8 Bài viết

Bài viết này trình bày một số kết quả về mở rộng và hạn chế ideal trong trường hợp trên vành thương, trên vành các thương và trên mở rộng nguyên. Tùy vào đối tượng cụ thể mà mở rộng và hạn chế còn có nhiều tính chất thú vị khác, tuy nhưng bài viết sẽ tập trung vào các ideal tổng quát là chính. Các kết quả trong bài viết tổng hợp từ [1], [2].

Cho $A$ là một vành. Nếu $\mathfrak{a}$ là ideal của $A$ thì kí hiệu $\mathfrak{a}\lhd A$. Ngoài ra ta gọi $I(A)$ là họ các ideal trong $A$, $Spec(A)$ là họ các ideal nguyên tố trong $A$.

Với miền nguyên $A$ và tập con nhân tính $S$ của $A$ ($0\notin S$), kí hiệu $S^{-1}A=\{a/s|a\in A,s\in S\}$ là vành các thương trên $A$ đối với $S$. Đặc biệt trong trường hợp $S=S_{\mathfrak{p}}=A-\mathfrak{p}$ với $\mathfrak{p}$ là một ideal nguyên tố trong $A$ thì ta kí hiệu $A_{\mathfrak{p}}=S_{\mathfrak{p}}^{-1}A$.
Một số kiến thức cơ bản về vành và ideal, bạn đọc có thể xem trong chương I của [1].

 

1. Lý thuyết cơ bản về mở rộng và hạn chế ideal

 

Ở mục này ta sẽ xét $A,B$ là các vành và $f:A\rightarrow B$ là một đồng cấu vành. Khi đó ta có thể coi $B$ là một "mở rộng" của $A$.
Xét $\mathfrak{a}$ là một ideal của $A$, ta gọi mở rộng của $\mathfrak{a}$ trên $B$ là ideal $Bf(\mathfrak{a})$, kí hiệu bởi $\mathfrak{a}^e$ (ở đây cần nhấn mạnh $f(\mathfrak{a})$ chưa chắc là ideal trong $B$ nên ta cần lấy ideal sinh bởi nó).
Xét $\mathfrak{b}$ là một ideal của $B$, khi đó ta chỉ ra được $f^{-1}(\mathfrak{b})$ là một ideal trên $A$, gọi là hạn chế của $\mathfrak{b}$ trên $A$, kí hiệu bởi $\mathfrak{b}^c$.

 

Tính chất 1: Cho $\mathfrak{a}\lhd A$ và $\mathfrak{b}\lhd B$. Khi đó:
• $\mathfrak{a}\subset \mathfrak{a}^{ec}, \mathfrak{b} \supset \mathfrak{b}^{ce}$,
• $\mathfrak{a}^{ece}=\mathfrak{a}^{e}$ và $\mathfrak{b}^{c}=\mathfrak{b}^{cec}$.

 

Tính chất trên có thể chứng minh dễ dàng nên tác giả nhường lại bạn đọc. Đặc biệt ở mệnh đề sau của tính chất 1 cho thấy rằng trên tập $\{\mathfrak{a}^{e}|\mathfrak{a}\lhd A\}$ thì phép lấy $^{ce}$ (tức là hạn chế rồi mở rộng) là một ánh xạ bất biến, tương tự với phép lấy $^{ec}$ trên tập $\{\mathfrak{b}^{c}|\mathfrak{b}\lhd B\}$. Đó là cơ sở để ta quan tâm đến hai tập hợp sau.

 

Mệnh đề 2: $C=\{\mathfrak{a}\lhd A| \exists \mathfrak{b}\lhd B: \mathfrak{b}^c= \mathfrak{a}\}$ được gọi là họ các ideal hạn chế trên $A$, $E=\{\mathfrak{b}\lhd B| \exists \mathfrak{a}\lhd A:\mathfrak{a}^e= \mathfrak{b}\}$ được gọi là họ các ideal mở rộng trên $B$. Khi đó $C=\{\mathfrak{a}\lhd A:\mathfrak{a}^{ec}=\mathfrak{a}\}$ và $E=\{\mathfrak{b}\lhd B:\mathfrak{b}^{ce}=\mathfrak{b}\}$.
Hơn nữa ta có song ánh \[(\_)^e:C\rightarrow E, \mathfrak{a}\mapsto \mathfrak{a}^e\] với ánh xạ ngược $(\_)^c:E\rightarrow C$, $\mathfrak{b}\mapsto \mathfrak{b}^c$.

Chứng minh. Ý thứ nhất nếu $\mathfrak{a}$ nằm trong $C$ thì tồn tại $\mathfrak{b}\lhd B:\mathfrak{a}=\mathfrak{b}^c$. Do đó $\mathfrak{a}^{ec}=\mathfrak{b}^{cec}=\mathfrak{b}^{c}=\mathfrak{a}$, ngược lại nếu $\mathfrak{a}=\mathfrak{a}^{ec}=(\mathfrak{a}^e)^c$ dẫn tới $\mathfrak{a}\in C$.
Ý thứ hai, theo nhận xét trước đó của ta thì $(\_)^e \circ (\_)^c = Id_E$ và $(\_)^c \circ (\_)^e = Id_C$ nên ta có $(\_)^e$ và $(\_)^c$ là song ánh.

 

Mệnh đề trên rất quan trọng, nó cho phép liên hệ các ideal trên $A$ với ideal trên $B$ một cách tương ứng. Trong từng trường hợp cụ thể, tương ứng trên sẽ cho ta các tính chất khác nhau. Tiếp theo là một loạt tính chất của mở rộng và hạn chế, xem như bài tập cho bạn đọc.

 

Mệnh đề 3: Cho $\mathfrak{a}_1,\mathfrak{a}_2 \lhd A$, $\mathfrak{b}_1,\mathfrak{b}_2 \lhd B$ . Khi đó:

• $(\mathfrak{a}_1+\mathfrak{a}_2)^e=\mathfrak{a}_1^e+\mathfrak{a}_2 ^e$; $(\mathfrak{b}_1+\mathfrak{b}_2)^c\supset \mathfrak{b}_1^c+\mathfrak{b}_2 ^c $;
• $ (\mathfrak{a}_1\cap \mathfrak{a}_2)^e\subset \mathfrak{a}_1^e\cap\mathfrak{a}_2 ^e$; $ (\mathfrak{b}_1\cap \mathfrak{b}_2)^c=\mathfrak{b}_1^c\cap\mathfrak{b}_2 ^c$;
• $(\mathfrak{a}_1\mathfrak{a}_2)^e=\mathfrak{a}_1^e\mathfrak{a}_2 ^e$; $(\mathfrak{b}_1\mathfrak{b}_2)^c=\mathfrak{b}_1^c\mathfrak{b}_2 ^c $;
• $(\mathfrak{a}_1:\mathfrak{a}_2)^e=(\mathfrak{a}_1^e:\mathfrak{a}_2^e)$, $(\mathfrak{b}_1:\mathfrak{b}_2)^c=(\mathfrak{b}_1^c\mathfrak{b}_2 ^c)$ trong đó $(\mathfrak{a}:\mathfrak{b})=\{x\in A:x\mathfrak{b}\subset \mathfrak{a}\}$.

 

Kết thúc mục này là tính chất bảo toàn tính nguyên tố của phép lấy hạn chế:

 

Mệnh đề 4: Cho $\mathfrak{P}$ là ideal nguyên tố trong $B$, khi đó $\mathfrak{P}^c$ là ideal nguyên tố trong $A$
Chứng minh. Xét $ab\in \mathfrak{P}^c=f^{-1}(\mathfrak{P})$, khi đó $f(a)f(b)\in \mathfrak{P}$ nên $f(a)\in \mathfrak{P}$ hoặc $f(b)\in \mathfrak{P}$, dẫn tới $a\in\mathfrak{P}^c$ hoặc $b\in\mathfrak{P}^c$.

 

Cần lưu ý rằng mở rộng của một ideal nguyên tố chưa chắc đã là ideal nguyên tố.
Nói chung mỗi mục II,III,IV của ta sẽ đi theo hướng: xác định tập C và E tương ứng với mở rộng ta đang xét, khảo sát tính cực đại, tính nguyên tố của các ideal khi mở rộng và một số tính chất liên quan khác.

 

Tài liệu tham khảo.

[1] M. F. Atiyah - I. G. Macdonald, Introduction to Commutative Algebra.

[2] Serge Lang, Algebraic Number Theory.



#2
Nxb

Nxb

    Thiếu úy

  • ĐHV Toán học Hiện đại
  • 679 Bài viết

Bài viết này trình bày một số kết quả về mở rộng và hạn chế ideal trong trường hợp trên vành thương, trên vành các thương và trên mở rộng nguyên. Tùy vào đối tượng cụ thể mà mở rộng và hạn chế còn có nhiều tính chất thú vị khác, tuy nhưng bài viết sẽ tập trung vào các ideal tổng quát là chính. Các kết quả trong bài viết tổng hợp từ [1], [2].

Cho $A$ là một vành. Nếu $\mathfrak{a}$ là ideal của $A$ thì kí hiệu $\mathfrak{a}\lhd A$. Ngoài ra ta gọi $I(A)$ là họ các ideal trong $A$, $Spec(A)$ là họ các ideal nguyên tố trong $A$.

Với miền nguyên $A$ và tập con nhân tính $S$ của $A$ ($0\notin S$), kí hiệu $S^{-1}A=\{a/s|a\in A,s\in S\}$ là vành các thương trên $A$ đối với $S$. Đặc biệt trong trường hợp $S=S_{\mathfrak{p}}=A-\mathfrak{p}$ với $\mathfrak{p}$ là một ideal nguyên tố trong $A$ thì ta kí hiệu $A_{\mathfrak{p}}=S_{\mathfrak{p}}^{-1}A$.
Một số kiến thức cơ bản về vành và ideal, bạn đọc có thể xem trong chương I của [1].

 

1. Lý thuyết cơ bản về mở rộng và hạn chế ideal

 

Ở mục này ta sẽ xét $A,B$ là các vành và $f:A\rightarrow B$ là một đồng cấu vành. Khi đó ta có thể coi $B$ là một "mở rộng" của $A$.
Xét $\mathfrak{a}$ là một ideal của $A$, ta gọi mở rộng của $\mathfrak{a}$ trên $B$ là ideal $Bf(\mathfrak{a})$, kí hiệu bởi $\mathfrak{a}^e$ (ở đây cần nhấn mạnh $f(\mathfrak{a})$ chưa chắc là ideal trong $B$ nên ta cần lấy ideal sinh bởi nó).
Xét $\mathfrak{b}$ là một ideal của $B$, khi đó ta chỉ ra được $f^{-1}(\mathfrak{b})$ là một ideal trên $A$, gọi là hạn chế của $\mathfrak{b}$ trên $A$, kí hiệu bởi $\mathfrak{b}^c$.

 

Tính chất 1: Cho $\mathfrak{a}\lhd A$ và $\mathfrak{b}\lhd B$. Khi đó:
• $\mathfrak{a}\subset \mathfrak{a}^{ec}, \mathfrak{b} \supset \mathfrak{b}^{ce}$,
• $\mathfrak{a}^{ece}=\mathfrak{a}^{e}$ và $\mathfrak{b}^{c}=\mathfrak{b}^{cec}$.

 

Tính chất trên có thể chứng minh dễ dàng nên tác giả nhường lại bạn đọc. Đặc biệt ở mệnh đề sau của tính chất 1 cho thấy rằng trên tập $\{\mathfrak{a}^{e}|\mathfrak{a}\lhd A\}$ thì phép lấy $^{ce}$ (tức là hạn chế rồi mở rộng) là một ánh xạ bất biến, tương tự với phép lấy $^{ec}$ trên tập $\{\mathfrak{b}^{c}|\mathfrak{b}\lhd B\}$. Đó là cơ sở để ta quan tâm đến hai tập hợp sau.

 

Mệnh đề 2: $C=\{\mathfrak{a}\lhd A| \exists \mathfrak{b}\lhd B: \mathfrak{b}^c= \mathfrak{a}\}$ được gọi là họ các ideal hạn chế trên $A$, $E=\{\mathfrak{b}\lhd B| \exists \mathfrak{a}\lhd A:\mathfrak{a}^e= \mathfrak{b}\}$ được gọi là họ các ideal mở rộng trên $B$. Khi đó $C=\{\mathfrak{a}\lhd A:\mathfrak{a}^{ec}=\mathfrak{a}\}$ và $E=\{\mathfrak{b}\lhd B:\mathfrak{b}^{ce}=\mathfrak{b}\}$.
Hơn nữa ta có song ánh \[(\_)^e:C\rightarrow E, \mathfrak{a}\mapsto \mathfrak{a}^e\] với ánh xạ ngược $(\_)^c:E\rightarrow C$, $\mathfrak{b}\mapsto \mathfrak{b}^c$.

Chứng minh. Ý thứ nhất nếu $\mathfrak{a}$ nằm trong $C$ thì tồn tại $\mathfrak{b}\lhd B:\mathfrak{a}=\mathfrak{b}^c$. Do đó $\mathfrak{a}^{ec}=\mathfrak{b}^{cec}=\mathfrak{b}^{c}=\mathfrak{a}$, ngược lại nếu $\mathfrak{a}=\mathfrak{a}^{ec}=(\mathfrak{a}^e)^c$ dẫn tới $\mathfrak{a}\in C$.
Ý thứ hai, theo nhận xét trước đó của ta thì $(\_)^e \circ (\_)^c = Id_E$ và $(\_)^c \circ (\_)^e = Id_C$ nên ta có $(\_)^e$ và $(\_)^c$ là song ánh.

 

Mệnh đề trên rất quan trọng, nó cho phép liên hệ các ideal trên $A$ với ideal trên $B$ một cách tương ứng. Trong từng trường hợp cụ thể, tương ứng trên sẽ cho ta các tính chất khác nhau. Tiếp theo là một loạt tính chất của mở rộng và hạn chế, xem như bài tập cho bạn đọc.

 

Mệnh đề 3: Cho $\mathfrak{a}_1,\mathfrak{a}_2 \lhd A$, $\mathfrak{b}_1,\mathfrak{b}_2 \lhd B$ . Khi đó:

• $(\mathfrak{a}_1+\mathfrak{a}_2)^e=\mathfrak{a}_1^e+\mathfrak{a}_2 ^e$; $(\mathfrak{b}_1+\mathfrak{b}_2)^c\supset \mathfrak{b}_1^c+\mathfrak{b}_2 ^c $;
• $ (\mathfrak{a}_1\cap \mathfrak{a}_2)^e\subset \mathfrak{a}_1^e\cap\mathfrak{a}_2 ^e$; $ (\mathfrak{b}_1\cap \mathfrak{b}_2)^c=\mathfrak{b}_1^c\cap\mathfrak{b}_2 ^c$;
• $(\mathfrak{a}_1\mathfrak{a}_2)^e=\mathfrak{a}_1^e\mathfrak{a}_2 ^e$; $(\mathfrak{b}_1\mathfrak{b}_2)^c=\mathfrak{b}_1^c\mathfrak{b}_2 ^c $;
• $(\mathfrak{a}_1:\mathfrak{a}_2)^e=(\mathfrak{a}_1^e:\mathfrak{a}_2^e)$, $(\mathfrak{b}_1:\mathfrak{b}_2)^c=(\mathfrak{b}_1^c\mathfrak{b}_2 ^c)$ trong đó $(\mathfrak{a}:\mathfrak{b})=\{x\in A:x\mathfrak{b}\subset \mathfrak{a}\}$.

 

Kết thúc mục này là tính chất bảo toàn tính nguyên tố của phép lấy hạn chế:

 

Mệnh đề 4: Cho $\mathfrak{P}$ là ideal nguyên tố trong $B$, khi đó $\mathfrak{P}^c$ là ideal nguyên tố trong $A$
Chứng minh. Xét $ab\in \mathfrak{P}^c=f^{-1}(\mathfrak{P})$, khi đó $f(a)f(b)\in \mathfrak{P}$ nên $f(a)\in \mathfrak{P}$ hoặc $f(b)\in \mathfrak{P}$, dẫn tới $a\in\mathfrak{P}^c$ hoặc $b\in\mathfrak{P}^c$.

 

Cần lưu ý rằng mở rộng của một ideal nguyên tố chưa chắc đã là ideal nguyên tố.
Nói chung mỗi mục II,III,IV của ta sẽ đi theo hướng: xác định tập C và E tương ứng với mở rộng ta đang xét, khảo sát tính cực đại, tính nguyên tố của các ideal khi mở rộng và một số tính chất liên quan khác.

 

Tài liệu tham khảo.

[1] M. F. Atiyah - I. G. Macdonald, Introduction to Commutative Algebra.

[2] Serge Lang, Algebraic Number Theory.

Vành $A$ không cần nguyên để định nghĩa vành các thương $S^{-1}A.$

 

Trước đây đại số giao hoán không được dạy ở Việt Nam, nhưng không may cho bạn là cách đây vài năm thì Đại học Khoa học Tự nhiên Hà Nội đã bắt đầu dạy môn này ở bậc đại học nên nếu bạn không sửa lại thì mình phải đóng chủ đề này vì box này không phải để mọi người xem lại kiến thức chung. Vẫn chủ đề này, bạn có thể đặt các câu hỏi, hoặc đăng bài tập, hoặc thảo luận sâu thêm,…, thì không vấn đề gì.

 

Trong box toán đại cương mình đang viết để tiếp nối đường cong và mặt đại số cho học sinh THCS/ phổ thông. Nếu bạn vẫn muốn viết về chủ đề này thì bạn có thể viết nó trong hoàn cảnh giải thích cho học sinh. Chẳng hạn như ta sẽ phải xét ánh xạ chính quy giữa hai đường cong.






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh