Đến nội dung

Hình ảnh

$a^4b +b^4c + c^4d +d^4a \ge abcd(a+b+c+d)$

- - - - -

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
truongphat266

truongphat266

    Trung sĩ

  • Thành viên
  • 160 Bài viết

Cho $a,b,c,d \ge 0$. Chứng minh rằng: $$a^4b +b^4c + c^4d +d^4a \ge abcd(a+b+c+d)$$

 



#2
Leonguyen

Leonguyen

    Trung sĩ

  • Thành viên
  • 160 Bài viết

Ta sẽ chọn các số $x,y,z,t$ thoả mãn $xa^4b+yb^4c+zc^4d+td^4a\geq a^2bcd.$

Sử dụng $\text{Weighted AM-GM}$ ta được

\begin{align*} xa^4b+yb^4c+zc^4d+td^4a&\geq(x+y+z+t)\cdot\sqrt[x+y+z+t]{(a^4b)^x\cdot(b^4c)^y\cdot(c^4d)^z\cdot(d^4a)^t}\\&=(x+y+z+t)\cdot\sqrt[x+y+z+t]{a^{4x+t}b^{4y+x}c^{4z+y}d^{4t+z}} \end{align*}

Chọn $x+y+z+t=1,$ đồng nhất các tham số ta được $\left\{ \begin{array}{l} 4x + t = 2\\ 4y + x = 1\\ 4z + y = 1\\4t + z = 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = \frac{23}{51}\\y = \frac{7}{51}\\z = \frac{11}{51}\\t = \frac{10}{51}\end{array} \right.  .$

$\ast$

$\ast$     $\ast$

Sử dụng bất đẳng thức $\text{AM-GM}$ ta có

\begin{align*}a^4b +b^4c + c^4d +d^4a &=\sum\left(\frac{23}{51}a^4b +\frac{7}{51}b^4c + \frac{11}{51}c^4d + \frac{10}{51}d^4a\right)\\&=\frac{1}{51}\sum(23a^4b +7b^4c + 11c^4d +10d^4a)\\&\geq\frac{1}{51}\left(\sum51\sqrt[51]{a^{23\cdot4+10}b^{23+7\cdot4}c^{7+11\cdot4}d^{11+10\cdot4}}\right)\\&=\sum a^2bcd=abcd(a+b+c+d)\end{align*}

Vậy ta có đpcm.


"Chỉ có cách nhìn thiển cận mới không thấy được vai trò của Toán học"

(Giáo sư Tạ Quang Bửu)





2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh