Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng: Với mọi $i=1,2,...,n$ thì tồn tại $j$ sao cho : $ x_{j} = y_{i} $ và : $ y_{j} = x_{i}. $


  • Please log in to reply
Chưa có bài trả lời

#1 DinhCuongTk14

DinhCuongTk14

    Tiến sĩ Diễn đàn Toán

  • Hiệp sỹ
  • 749 Bài viết
  • Giới tính:Nam
  • Đến từ:ĐHBK Hà Nội

Đã gửi 01-04-2007 - 11:16

Gọi n là 1 số nguyên dương và : $ x_{1} ,...,x_{n}, y_{1} ,..., y_{n} $ là các số thực dương thỏa mãn tính chất sau :
Với mỗi tập con khác rỗng $S \subset {1,2,...,n} $ thì tồn tại một tập con khác không rỗng $T \subset {1,2,...,n} $ và :
$ \dfrac{ \sum _{i \in T} x_{i} }{ \sum _{i \in T} y_{i} }=\dfrac{ \sum _{i \in S} y_{i} }{ \sum _{i \in S} x_{i} } $.
Chứng minh rằng: Với mọi $i=1,2,...,n$ thì tồn tại $j$ sao cho :
$ x_{j} = y_{i} $ và : $ y_{j} = x_{i}. $






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh