Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

đường thăng OI có gì đặc biệt


  • Please log in to reply
Chủ đề này có 16 trả lời

#1 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 13-04-2005 - 16:14

Cho tam giác ABC có O là tâm đường tròn ngoại tiếp, I là tâm đường tròn nội tiếp.D,E,F là tiếp điểm của đường tròn nội tiếp với 3 cạnh tam giác.CMR O,I và trực tâm H của :vdots DEF thẳng hàng
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#2 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 17-04-2005 - 13:58

Các cao thủ hình học đâu rùi?
Bài này dễ quá chăng?
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#3 metamodel

metamodel

    Lính mới

  • Thành viên
  • 4 Bài viết

Đã gửi 17-04-2005 - 15:42

Bài này tôi giải bằng vectơ.
Gọi G là trọng tâm tgDEF thì theo định lý về đường thẳng Ơle : I, H, G thẳng hàng. Do đó : O, I, H thẳng hang khi và chỉ khi O,I,G thẳng hàng.

Ta ký hiệu #AB là vectơ AB. Bây giờ ta tính #OI và #IG theo #AB và #AC.

Gọi A’,B’,C’ là chân các đường cao của tgABC. Dễ tính được #AA’=(bcosC#AB+ccosB#AC)/a.
Lại thấy : #ID = (r/AA’)#AA’=(a/2p)#AA’=(bcosC#AB+ccosB#AC)/2p.
Tương tự tính được #IE và #IF.

Vậy #IG=1/3(#ID + #IE + #IF) nên
#IG = [b(cosA+cosC-1)#AB + c(cosB+cosA-1)#AC]/6p

Gọi M là trung điểm BC thì có gócMOC=gócA hoặc MOC = pi-gócA. Trong cả 2 trường hợp ta luôn có #OM = (acotgA/2r)#ID.

Ta còn tính được #MD = [a/2 – (p-c)]/a .#BC = (b-c)/2a#AB+(c-b)/2a #AC.

Suy ra : #OI = #OM + #MD + #DI = (acotgA/2r - 1)#ID + #MD
= [(acotgA/2r – 1)bcosC/2p + (b-c)/2a]#AB + [(acotgA/2r – 1)ccosB/2p + (c-b)/2a]#AC

Đã biểu diễn : #IG = k#AB + l#AC và #OI = m#AB + n#AC
Vậy : O, I, G thẳng hàng < = > k.n=l.m
< = > [(acotgA/2r – 1)bcosC/2p + (b-c)/2a]. c(cosB+cosA-1) = [(acotgA/2r – 1)ccosB/2p + (c-b)/2a]. b(cosA+cosC-1)
< = > (acotgA/2r – 1)bc/2p.[cosC(cosB+cosA-1)-cosB(cosA+cosC-1)] = (c-b)/2a.[ b(cosA+cosC-1) + c(cosB+cosA-1) ]

Vế phải (VP) biến đổi (giữ (c-b) còn lại quy hết về hàm sin ) được :
VP = (c-b)/2 .(1-cosB-cosC)

Vế trái (VT) = (acotgA/2r – 1)bc/2p.(cosA-1)(cosC-cosB)
= (abc.cotgA/4pr – bc/2p).(cosA-1)(cosC-cosB)
Có : abc.cotgA/4pr = abc.cotgA/4S = RcotgA = RcosA/sinA.
Lại có : bc/2p = bc/(a+b+c) = 4Rsin(A/2)sin(B/2)sin(C/2) / sinA
= R(cosA+cosB+cosC-1) / sin A

Với chú ý là sinA+sinB+sinC = 4cos(A/2)cos(B/2)cos(C/2) và cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)

Vậy : abc.cotgA/4pr – bc/2p = R(1-cosB-cosC) /sinA
Suy ra : VT = R(1-cosB-cosC) /sinA . (1-cosA)(cosB-cosC) = (1-cosB-cosC).(c-b)/2 =VP

Vậy ta có ĐPCM.
Bạn nào giải được bằng hình học thuần túy thì post lên nhé.

Bài viết đã được chỉnh sửa nội dung bởi metamodel: 17-04-2005 - 15:44


#4 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 17-04-2005 - 21:23

Bài này có thể giải bằng hình phẳng thuần túy đấy...
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#5 Laoshero1805

Laoshero1805

    Trung sĩ

  • Thành viên
  • 157 Bài viết
  • Giới tính:Nam
  • Đến từ:Thành phố Hồ Chí Minh
  • Sở thích:Maths, Music, Sport

Đã gửi 29-04-2005 - 17:42

Đây là cách của mình:
Gọi M, N, P là các tâm bàng tiếp của tam giác ABC. Ta dễ dàng cm được tam giác MNP và DEF có 3 cặp cạnh song song nhau và đường thẳng Euler của chúng song song nhau. Mà ta có I là trực tâm tam giác MNP => Ix, là đường thẳng Euler của DEF, song song với Iy, là đường thẳng Euler của tam giác MNP => đường thẳng Euler của MNP và DEF trùng nhau. Mà O lại chính là tâm Euler của MNP => IO là đường thẳng Euler của tam giác DEF.

Hình gửi kèm

  • romatic_ale.jpg

Bài viết đã được chỉnh sửa nội dung bởi lehoan: 30-04-2005 - 08:52

Tỏ ra mình hơn người chưa phải là hay. Cái chân giá trị là phải tỏ rằng ngày hôm nay mình đã hơn chính mình ngày hôm qua.
(Tục ngữ Ấn Độ).

#6 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 30-04-2005 - 18:27

Cách giải này hay đó. Nhưng chú ý nha M,N,P không phải là tâm đường tròn bàng tiếp tam giác!!!
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#7 Laoshero1805

Laoshero1805

    Trung sĩ

  • Thành viên
  • 157 Bài viết
  • Giới tính:Nam
  • Đến từ:Thành phố Hồ Chí Minh
  • Sở thích:Maths, Music, Sport

Đã gửi 01-05-2005 - 16:26

Cách giải của mình đúng đó bạn!!! Chỉ vì bạn dựa theo hình của anh lehoan thôi! Giải theo hình nào cũng đúng vì đơn giản chỉ là phép ... hình như là vị tự thì phải ??
Tỏ ra mình hơn người chưa phải là hay. Cái chân giá trị là phải tỏ rằng ngày hôm nay mình đã hơn chính mình ngày hôm qua.
(Tục ngữ Ấn Độ).

#8 lehoan

lehoan

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1213 Bài viết
  • Giới tính:Nam
  • Đến từ:Vinh
  • Sở thích:Gái, Gái và Gái.

Đã gửi 01-05-2005 - 16:42

Thực ra là lehoan định post lời giải của mình lên nhưng đọc lời giải của Ls1805 lại thấy khá giống nên chèn ảnh vào.Lúc đó A';B';C' là trung điểm của IM;IN;IP.Suy ra chúng là A'B'C' là ảnh của MNP qua phép vị tự tâm I tỷ số 1/2

Hình gửi kèm

  • Winter.jpg


#9 lehoan

lehoan

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1213 Bài viết
  • Giới tính:Nam
  • Đến từ:Vinh
  • Sở thích:Gái, Gái và Gái.

Đã gửi 01-05-2005 - 17:03

Các bác làm bài này nhé (dễ thôi) nhưng khá hay
Cho tứ giác ABCD có AB=AD;các góc ABC và ADC đều vuông .Evà F thuộc BC và CD. CMR

Hình gửi kèm

  • Water_lilies.jpg


#10 Anh Cuong

Anh Cuong

    Thượng sĩ

  • Thành viên
  • 211 Bài viết

Đã gửi 01-05-2005 - 20:24

Ta có:
.
Hoàn toàn tương tự .
Từ (1) và (2) ta rút ra kết luận phải tìm.

Bài viết đã được chỉnh sửa nội dung bởi Anh Cuong: 01-05-2005 - 20:25


#11 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 02-05-2005 - 17:20

Chà bài toán đơn giản mà thật ý nghĩa phải không. Sau đây là bài áp dụng.
Tam giác ABC với D,E,F là tiếp điểm của đường tròn nội tiếp với các cạnh BC,CA,AB. Gọi X là điểm đối xứng của D qua EF. AX cắt BC tại L. CM L nằm trên đường thẳng OI. Làm thử đi.
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#12 neverstop

neverstop

    Thượng sĩ

  • Thành viên
  • 261 Bài viết
  • Đến từ:Russia

Đã gửi 10-05-2005 - 21:51

tui có 1 cách giải khác bài tóan đầu tiên:
Gọi M, N, P là trung điểm các cạnh của tam giác DEF. Phép nghịch đảo tâm I biến tam giác ABC thành tam giác MNP nên I, O và tâm đường tròn ngoại tiếp tam giác MNP thẳng hàng. Dễ thấy đường thẳng qua I và tâm đường tròn ngoại tiếp tam giác MNP là đường thẳng Ơle của tam giác DEF, suy ra đpcm.

#13 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 12-05-2005 - 10:17

Ý tưởng bài này không ngờ là được sử dụng trong bài hình đề thi chọn đội tuyển Quốc gia 2005
Có ai không dùng kết quả này mà lại làm được câu b bài 1 đó không???
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#14 neverstop

neverstop

    Thượng sĩ

  • Thành viên
  • 261 Bài viết
  • Đến từ:Russia

Đã gửi 12-05-2005 - 20:46

bài toán áp dụng của lovePearl_maytrang mình giải thế này:

nhờ bài toán 1 mà đpcm <=> LI là đường thẳng Ơle của tam giác DEF <=> LI đi qua trực tâm H của tam giác DEF (1).
Gọi M là giao điểm của AI và BC thì (1) <=> XH/HD = AI/IM <=> XH/HD = (b+c)/a, ở đây a, b, c là độ dài các cạnh tam giác. Bằng lượng giác, thì kiểm tra đẳng thức trên không phức tạp lắm (xin khỏi viết ở đây).

Còn bài thi hình Quốc gia như thế nào hả bạn?
Download phần mềm miễn phí: http://rilwis.tk

#15 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 14-05-2005 - 17:57

Còn bài thi hình Quốc gia như thế nào hả bạn?

Bạn vào trong này xem nhé:
http://www.diendanto...topic=3689&st=0
Bài 1 ở câu a ta chứng minh các đường thẳng đó đồng qui tại một điểm trên OI, còn câu b thì phải dùng kết quả này...
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#16 lovePearl_maytrang

lovePearl_maytrang

    MIM-nhạc điệu của toán học

  • Hiệp sỹ
  • 292 Bài viết
  • Đến từ:Đà Nẵng
  • Sở thích:nhạc, tài chính, một chút lịch sử

Đã gửi 14-05-2005 - 18:03

Tôi vừa nghĩ ra thêm một cách để chứng minh kết quả đầu tiên:
http://dientuvietnam.net/cgi-bin/mimetex.cgi?A_1 nằm trên BC sao cho IA :Dhttp://dientuvietnam.net/cgi-bin/mimetex.cgi?A_1I^2=http://dientuvietnam.net/cgi-bin/mimetex.cgi?A_1B.A_1C, suy ra http://dientuvietnam...mimetex.cgi?A_1 nằm trên trục đẳng phương của đường tròn (O) và đường tròn điểm (I). Dựng http://dientuvietnam...mimetex.cgi?B_1 tương tự, và http://dientuvietnam...mimetex.cgi?B_1 cũng nằm trên trục đẳng phương này, do đó http://dientuvietnam...etex.cgi?A_1B_1 :D OI
Dễ thấy http://dientuvietnam...etex.cgi?A_1B_1 là đối cực của H đối với (I), do đó http://dientuvietnam...etex.cgi?A_1B_1 :D IH ;) O,I,H thẳng hàng...
Ghé thăm blog nhé:
http://360.yahoo.com/steppe2205

#17 neverstop

neverstop

    Thượng sĩ

  • Thành viên
  • 261 Bài viết
  • Đến từ:Russia

Đã gửi 14-05-2005 - 22:18

cách giải này độc đáo ghê. có lẽ bài toán này vẫn chưa thể kết thúc được ở đây.
Download phần mềm miễn phí: http://rilwis.tk




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh