Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Câu 4 VMO 2008


  • Please log in to reply
Chủ đề này có 12 trả lời

#1 vo thanh van

vo thanh van

    Võ Thành Văn

  • Hiệp sỹ
  • 1197 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình quê ta ơi

Đã gửi 29-01-2008 - 12:37

Cho dãy số thực $(x_n)$ được xác định như sau:
$x_1=0,x_2=2$ và $x_{n+2}=2^{-x_n}+\dfrac{1}{2}$ với mọi $n=1,2,3...$
Chứng minh rằng dãy có giới hạn hữu hạn khi $n \leftrightarrow +\infty $.Hãy tìm giới hạn đó
Quy ẩn giang hồ

#2 tanpham90

tanpham90

    Thượng sĩ

  • Thành viên
  • 218 Bài viết
  • Giới tính:Nam
  • Đến từ:TP Ho Chi Minh
  • Sở thích:Inequality

Đã gửi 29-01-2008 - 13:57

Các bạn làm thế nào ? Minh đi chứng minh 4 day con $x_{4k-2};x_{4k-1};x_{4k};x_{4k+1}$ hội tụ nhưng cách làm kha la dai tuy rằng không phức tạp
Chuyên toán ----- ĐHSP-TPHCM ----- 05-08

#3 doductai

doductai

    Sĩ quan

  • Thành viên
  • 341 Bài viết
  • Đến từ:Hải Dương

Đã gửi 29-01-2008 - 14:50

mình cũng làm giống bạn,không biết tình hình ở TPHCM và các nơi khác thế nào nhỉ?

#4 TamTam

TamTam

    Hạ sĩ

  • Thành viên
  • 67 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng

Đã gửi 29-01-2008 - 15:17

Bài này có thể dùng nguyên lý ánh xạ co cho dãy chẵn và dãy lẻ, ngắn gọn hơn
Après la pluie, le beau temps!

#5 tanlsth

tanlsth

    Tiến Sĩ Diễn Đàn Toán

  • Hiệp sỹ
  • 1428 Bài viết
  • Giới tính:Nam
  • Đến từ:Japan

Đã gửi 29-01-2008 - 15:22

Cái này dùng Lagrange chính là cái ánh xạ co em TamTam nói ở trên rất ngắn, chỉ là dãy chẳn và lẻ.Bài này ok.

Learn from yesterday,live for today,hope for tomorrow
The important thing is to not stop questioning


#6 dtdong91

dtdong91

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1791 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K35-THPT chuyên Phan Bội Châu-Nghệ An
  • Sở thích:đá bóng ,làm toán ,đọc sách

Đã gửi 29-01-2008 - 15:39

Đúng vậy bài này có thể dùng Lagrange cho dãy chẵn và lẻ , rất nhanh
có n/xét $ \dfrac{1}{2} \le x_n \le \dfrac{3}{2}$
Xét $ f(x)=2^{-x}+\dfrac{1}{2}$
Có $ f'(x)=-2^{-x}ln2$
=>$ |f'(x)|=2^{-x}ln2 < ln2$
12A1-THPT PHAN BỘI CHÂU-TP VINH-NGHỆ AN

SẼ LUÔN LUÔN Ở BÊN BẠN

#7 t_toan

t_toan

    Thượng sĩ

  • Thành viên
  • 202 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT TP Cao Lanh
  • Sở thích:Tổng quát hóa những bài toán có thể

Đã gửi 29-01-2008 - 16:57

Bài 4: Mình làm thế này, cũng tương đối giống như các bạn...

Dễ dàng chứng minh rằng $0<x_n<\dfrac{3}{2}$ bằng cách áp dụng tính nghịch biến của hàm số $f(x)=2^{-x}+\dfrac{1}{2}$.

Sau đó bằng quy nạp ta sẽ chứng minh nhận định sau:

Với mọi $n>0$ ta có ta luôn có $x_{4n}<1$, $x_{4n+1}<1$ và $x_{4n+2}>1$, $x_{4n+3}>1$.

Sau đó ta sẽ chứng minh rằng từng dãy con sẽ là dãy số đơn điệu... (Cái này post sau nhé!). Sau đó suy ra giới hạn của các dãy $x_{4n}, x_{4n+1}, x_{4n+2}>1, x_{4n+3}$ là $1$. Theo định lý giới hạn về dãy con ta suy ra $limx_n=1$...!!?

Lên diễn đàn toán học ta phải ghi lại những bài toán hay,bài toán khó đem về nhà để cố gắng tìm tòi ra .....những quyển sách có những bài tương tự mà chép lời giải rồi post lên diễn đàn !???

#8 t_toan

t_toan

    Thượng sĩ

  • Thành viên
  • 202 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT TP Cao Lanh
  • Sở thích:Tổng quát hóa những bài toán có thể

Đã gửi 29-01-2008 - 17:08

Đúng vậy bài này có thể dùng Lagrange cho dãy chẵn và lẻ , rất nhanh
có n/xét $ \dfrac{1}{2} \le x_n \le \dfrac{3}{2}$
Xét $ f(x)=2^{-x}+\dfrac{1}{2}$
Có $ f'(x)=-2^{-x}ln2$
=>$ |f'(x)|=2^{-x}ln2 < ln2$

Bạn ơi. Hình như đạo hàm của hàm số $f(x)$ bạn tính sai rồi thì phải. $f'(x)=2^{-x}.ln\dfrac{1}{2}$ mà bạn? Vậy ta mới có $f(x)$ là hàm số nghịch biến trên $R $ chứ. Bạn xem thứ lại xem mình nói thế có đúng không nhá...!

Lên diễn đàn toán học ta phải ghi lại những bài toán hay,bài toán khó đem về nhà để cố gắng tìm tòi ra .....những quyển sách có những bài tương tự mà chép lời giải rồi post lên diễn đàn !???

#9 asdthutrang

asdthutrang

    Hạ sĩ

  • Thành viên
  • 94 Bài viết

Đã gửi 29-01-2008 - 18:32

Cách làm thế đúng rồi mà.
T Toan tính đạo hàm sai rồi.Chắc em này học lớp 11 à.
Cứ Lagrang là ok.
YÊU LÀ ĐỂ KẺ ĐANG YÊU TRỞ NÊN HOÀN HẢO KHÔNG PHẢI ĐỂ NGƯỜI ĐƯƠC YÊU TRỞ THÀNH THẦN TƯỢNG.
YÊU NHƯ THẾ NGƯỜI TA MỚI GỌI LÀ YÊU
MYT

#10 zaizai

zaizai

    Tiến sĩ diễn đàn toán

  • Thành viên
  • 1380 Bài viết
  • Đến từ:Quảng Trị
  • Sở thích:giải toán(đặc biệt là Bất đẳng thức), đá bóng &lt;br&gt;đội bóng yêu thích là Man utd

Đã gửi 29-01-2008 - 23:55

Dạng này có thể giải tổng quát như sau:

Cho hàm số $f(x) $xác định và có đạo hàm trên miền xác định $D$ thoả mãn điền kiện $|f'(x)|\le c<1 $$(c=const)$ và phương trình $f(x)=x$ có nghiệm duy nhất $\alpha \in D$ khi đó dãy số $(x_n) (n=0,1,2...)$ xác định bởi $x_0\in D$ và $x_{n+1}=f(x_n)$ có giới hạn là $\alpha $ khi $n\to +\infty $.

Chứng minh khá là đơn giản:
Giả sử rằng: $|f'(x)|\le c<1 $ thì theo Lagrende, với mỗi n đủ lớn $\exists c_n\in [x_n,\alpha]$ sao cho $f(x_n)-f(\alpha)=(x_n-\alpha)f'(c_n)$ Từ đó suy ra:

$|x_{n+1}-\alpha|=|x_n-\alpha||f'(c_n)|\le |x_n-\alpha|c$

Dùng truy hồi và qui nạp ta có:

$0<|x_n-\alpha|\le |x_n-\alpha|c\le...\le |x_0-\alpha|c^n$

Lại có:

$\lim_{n\to +\infty}c^n=0\to \lim_{n\to +\infty}x_n=\alpha$

Để chứng minh $f(x)=x$ có nghiệm duy nhất $\alpha \in D$ ta chỉ cần xét hàm số $g(x)=f(x)-x$. Hàm này có đạo hàm bậc nhất nhỏ hơn $0$ suy ra phương trình có nghiệm duy nhất.

Bài viết đã được chỉnh sửa nội dung bởi zaizai: 29-01-2008 - 23:56


#11 1001001

1001001

    Super Theory

  • Thành viên
  • 334 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng

Đã gửi 30-01-2008 - 05:14

$D$ phải liên thông hay ít nhất là đóng.
My major is CS.

#12 chuyentoan

chuyentoan

    None

  • Hiệp sỹ
  • 1650 Bài viết
  • Giới tính:Nam
  • Đến từ:Darmstadt - Germany
  • Sở thích:Guitar, Bóng đá

Đã gửi 30-01-2008 - 12:19

$D$ phải liên thông hay ít nhất là đóng.


Nói chung với các bạn cấp III thì tính chất đóng, liên thông của tập hợp không đc chú ý lắm. Vì những cái đó chưa được học kỹ càng và tập D trong các bài toán thi QG thông thường vẫn thỏa mãn những tính chất đó. Nói chung, ý tưởng hàm co là đúng rồi
The only way to learn mathematics is to do mathematics

#13 ThanhdatCHV1417

ThanhdatCHV1417

    Binh nhất

  • Thành viên
  • 20 Bài viết

Đã gửi 14-04-2015 - 22:40

Bây h e mới làm :)) dùng 4 dãy con như trên cúng đúng chứ ạ!




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh