Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

TST 2008


  • Please log in to reply
Chủ đề này có 76 trả lời

#1 phtung

phtung

    Trung sĩ

  • Thành viên
  • 166 Bài viết

Đã gửi 29-03-2008 - 17:19

Hôm nay vừa thi xong ngày 1, biết đề được có 2 bài. Chả biết có khó ko nữa:

Đề thi chọn đội tuyển Việt Nam Ngày 1 (29/3/2008)


Bài 3 :
Cho $T$ là tập $n$ số nguyên dương đầu tiên. Một tập$ K$ là tập khuyết của$ T$, nếu tồn tại $1$ số nguyên dương $c$ bé hơn $\dfrac{n}{2}$ sao cho với mọi $x$ và $y$ trong $K$ thì $|x-y| \neq c$. Tìm $|K|$ lớn nhất theo $n$.

Thấy bảo là ra đáp số khoảng 3n/2. Nhưng thế thì nghe có vẻ ko khó lắm nhỉ????
Vì ví dụ xét $K$ và $K+c$ thì sẽ là 2 tập ko giao nhau và nằm trong khoảng từ 1 đến$ \dfrac{3n}{2}$. Suy ra |K| xấp xỉ khoảng 3n/2, sau đó thì xét thêm các trường hợp $n = 3k, 3k+1, 3k+2...$

#2 lehoan

lehoan

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1213 Bài viết
  • Giới tính:Nam
  • Đến từ:Vinh
  • Sở thích:Gái, Gái và Gái.

Đã gửi 29-03-2008 - 17:51

Kết quả là $[\dfrac{2n}{3}]$.

Giả sử $K$ là tập khuyết và $K=A\cup B$ với $A$ gồm các phần tử không nhỏ hơn $n/2$ và $B$ gồm các phần tử nhỏ hơn $n/2$.

th 1: $|A|\ge |K|/2$

Ta có $|(A-c)\cap K|=0$ nên ta có $|A|+|K|\le n$, suy ra $3|K|/2\le n$ suy ra $|K|\le 2n/3$

th2: $|B|\ge |K|/2$
Ta có $|(B+c)\cup K|=0$ nên ta có $|B|+|K|\le n$, suy ra $3|K|/2\le n$

Với giá trị $[\dfrac{2n}{3}]$

$n=3k$ thì $K=\{1,2,...,k,2k+1,...,3k\}$ tương ứng $c=k$

$n=3k+1$ thì $K=\{1,2,...,k,2k+2,...,3k+1\}$ tương ứng $c=k$

$n=3k+2$ thì $K=\{1,2,...,k,2k+2,....,3k+2\}$ tương ứng $ c=k+1$

#3 phtung

phtung

    Trung sĩ

  • Thành viên
  • 166 Bài viết

Đã gửi 29-03-2008 - 18:00

Thế mình giải sai rồi :) Mà trông lời giải ngắn gọn nhỉ :lol:

#4 nguyenchuc

nguyenchuc

    Binh nhất

  • Thành viên
  • 23 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Bắc Giang

Đã gửi 29-03-2008 - 18:31

Tình hình làm bài của mọi người thế nào? Ai thi thì post lên cho mình xem với! :lol:
Không biết bạn Duy (ĐHQG) làm bài thế nào nhỉ?
Không biết Hải Dương năm nay thế nào? Anh Sơn trường mình làm bài như thế nào :) (cơ hội duy nhất của trường mình)

Bài viết đã được chỉnh sửa nội dung bởi nguyenchuc: 29-03-2008 - 18:35

Don't ask what your country can do for you!
Ask what you can do for your country!

#5 FOOL90

FOOL90

    Thiếu úy

  • Thành viên
  • 628 Bài viết
  • Giới tính:Nam
  • Đến từ:Đại Học FPT
  • Sở thích:Everything interest me:)

Đã gửi 29-03-2008 - 22:05

Quang cảnh này làm mình nhớ đến hình ảnh ÔNG ĐỒ GIÀ , năm ngoái TST xong thấy mọi người bàn luận sôi nổi lắm, năm nay "chả kém":).
Take it easy

#6 vo thanh van

vo thanh van

    Võ Thành Văn

  • Hiệp sỹ
  • 1197 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình quê ta ơi

Đã gửi 29-03-2008 - 22:05

Hôm nay vừa thi xong ngày 1, biết đề được có 2 bài. Chả biết có khó ko nữa:

Bài 3. Cho T là tập n số nguyên dương đầu tiên. Một tập K là tập khuyết của T, nếu tồn tại 1 số nguyên dương c bé hơn n/2 sao cho với mọi x và y trong K thì |x-y| khác c. Tìm |K| max theo n.

Thấy bảo là ra đáp số khoảng 3n/2. Nhưng thế thì nghe có vẻ ko khó lắm nhỉ????
Vì ví dụ xét K và K+c thì sẽ là 2 tập ko giao nhau và nằm trong khoảng từ 1 đến 3n/2. Suy ra |K| xấp xỉ khoảng 3n/2, sau đó thì xét thêm các trường hợp n = 3k, 3k+1, 3k+2...

Thầy post đề lên được không ạ,năm nay thi TST tương đối sớm,không biết các bác làm ăn thế nào.
Quy ẩn giang hồ

#7 phtung

phtung

    Trung sĩ

  • Thành viên
  • 166 Bài viết

Đã gửi 30-03-2008 - 09:20

Đề này do đứa học sinh nó nói lại, chứ mình cũng không rõ. Thấy nó bảo là bài 2 là bài Đa thức là dễ. Bài 1 là bài hình học thì không rõ thế nào. Chỉ bảo là bài số 3 này học sinh có tranh cãi, nên mình đưa lên trên này để mọi người giải luôn.

#8 nguyenchuc

nguyenchuc

    Binh nhất

  • Thành viên
  • 23 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Bắc Giang

Đã gửi 30-03-2008 - 09:26

Chà, năm nay thấy diendan trầm lắng quá! :)
Chẳng thấy ai lên trao đổi gì cả!!! :lol:
Thi sang ngày thứ hai rồi mà vẫn chưa biết đề ngày một !!!??? :lol:

Bài viết đã được chỉnh sửa nội dung bởi nguyenchuc: 30-03-2008 - 09:30

Don't ask what your country can do for you!
Ask what you can do for your country!

#9 gadget

gadget

    forever and one,i will miss you

  • Thành viên
  • 151 Bài viết
  • Giới tính:Nam
  • Đến từ:Truyền thông & Mạng MT-K52 HUT

Đã gửi 30-03-2008 - 12:00

Hình như các cao thủ diễn đàn đều không thi nên mới có hiện tượng như thế :lol: Có gì lạ đâu ?mà hình như năm nay thi người ta thu luôn đề nên không post đầy đủ đề lên được :D
Vòng 2 không biết thế nào,chứ vòng 1 ra đề chuối lắm nhiều bạn làm được :lol: chán vãi :)

Bài viết đã được chỉnh sửa nội dung bởi gadget: 30-03-2008 - 12:03

la vieillesse est une île entourée par la mort

#10 chuyentoan

chuyentoan

    None

  • Hiệp sỹ
  • 1650 Bài viết
  • Giới tính:Nam
  • Đến từ:Darmstadt - Germany
  • Sở thích:Guitar, Bóng đá

Đã gửi 30-03-2008 - 12:21

Kết quả là $[\dfrac{2n}{3}]$.

Giả sử $K$ là tập khuyết và $K=A\cup B$ với $A$ gồm các phần tử không nhỏ hơn $n/2$ và $B$ gồm các phần tử nhỏ hơn $n/2$.

th 1: $|A|\ge |K|/2$

Ta có $|(A-c)\cap K|=0$ nên ta có $|A|+|K|\le n$, suy ra $3|K|/2\le n$ suy ra $|K|\le 2n/3$

th2: $|B|\ge |K|/2$
Ta có $|(B+c)\cup K|=0$ nên ta có $|B|+|K|\le n$, suy ra $3|K|/2\le n$

Với giá trị $[\dfrac{2n}{3}]$

$n=3k$ thì $K=\{1,2,...,k,2k+1,...,3k\}$ tương ứng $c=k$

$n=3k+1$ thì $K=\{1,2,...,k,2k+2,...,3k+1\}$ tương ứng $c=k$

$n=3k+2$ thì $K=\{1,2,...,k,2k+2,....,3k+2\}$ tương ứng $ c=k+1$


Quý vẫn chăm chỉ làm toán nhỉ? Các bạn Nghệ An làm thế nào? Có tốt không?
The only way to learn mathematics is to do mathematics

#11 vuthanhtu_hd

vuthanhtu_hd

    Tiến sĩ Diễn Đàn Toán

  • Hiệp sỹ
  • 1189 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Dương
  • Sở thích:ngủ ^^

Đã gửi 30-03-2008 - 13:35

Có bà con nào ở Hải Dương cho mình biết tình hình đội nhà thế nào không?

Nếu một ngày bạn cảm thấy buồn và muốn khóc,hãy gọi cho tôi nhé.
Tôi không hứa sẽ làm cho bạn cười nhưng có thể tôi sẽ khóc cùng với bạn.
Nếu một ngày bạn muốn chạy chốn tất cả hãy gọi cho tôi.
Tôi không yêu cầu bạn dừng lại nhưng tôi sẽ chạy cùng với bạn.
Và nếu một ngày nào đó bạn không muốn nghe ai nói nữa,hãy gọi cho tôi nhé.
Tôi sẽ đến bên bạn và chỉ im lặng.
Nhưng nếu một ngày bạn gọi đến tôi mà không thấy tôi hồi âm...
Hãy chạy thật nhanh đến bên tôi vì lúc đó tôi mới là người cần bạn.

______________________
__________________________________
Vu Thanh TuUniversity of Engineering & Technology


#12 dtdong91

dtdong91

    Tiến sĩ diễn đàn toán

  • Hiệp sỹ
  • 1791 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K35-THPT chuyên Phan Bội Châu-Nghệ An
  • Sở thích:đá bóng ,làm toán ,đọc sách

Đã gửi 30-03-2008 - 13:54

Câu đầu thì có vẻ dễ quá nhỉ
Tổ hợp TST mình nghĩ chắc phải là bài phân loại chứ :)
12A1-THPT PHAN BỘI CHÂU-TP VINH-NGHỆ AN

SẼ LUÔN LUÔN Ở BÊN BẠN

#13 h_kdkhtn

h_kdkhtn

    Binh nhất

  • Thành viên
  • 32 Bài viết
  • Giới tính:Nam
  • Đến từ:12a1 toan khtn

Đã gửi 30-03-2008 - 16:27

Đề ngày 2 nè:
bài 1:m và n là các số nguyên dương,c/m (2m+3)^n chia het cho 6m khi va chi khi 3^n+1 chia het cho 4m
bài 2:tam giác ABC có phân giác AD BE CF,k là số thực dương.Trên AD BE CF lấy L M N sao cho AL/AD=BM/BE=CN/CF=k,(O_1) là đường tròn qua A,L và tiếp xúc với OA tại A với O là tâm đường tròn ngoại tiếp ABC,(O_2) (O_3) cũng xác định tương tự
a)cho k=1/2 chứng minh (O_1) (O_2) (O_3) cùng đi qua 2 điểm và hai điểm đó cùng đi qua trọng tâm G cua tam giác ABC
b)với giá trị nào của k>0 để (O_1) (O_2) (O_3) cùng đi qua 2 điểm
bài 3:cho M là tập hợp của 2008 số nguyên dương đầu tiên,mỗi số đó được tô bởi một trong 3 mầu:xanh đỏ và vàng,và mỗi màu thì được tô ít nhất một số,xet 2 tập
A={(x,y,z) thuộc M mà x,y,z tô cùng màu,x+y+z chia hết cho 2008})
B={(x,y,z) thuộc M mà x,y,z tô khác màu nhau,x+y+z chia hết cho 2008}
(bộ (x,y,z) thì x,y,z không nhất thiết phân biệt,giống nhau cũng được)
c/m:số phần tử của B nhỏ hơn 2 lần số phần tử của A

đánh vội quá,nhờ CTV gõ latex giúp nhé
nơi khác làm như thế nào nhỉ?Mình chưa biết nhiều về đoàn Hải Dương
mình làm 2/3baif 6 khó quá trời!!!!!

#14 Sao_bang_lanh_gia

Sao_bang_lanh_gia

    Trung sĩ

  • Thành viên
  • 120 Bài viết
  • Đến từ:thiên đàng

Đã gửi 30-03-2008 - 16:34

Hình như các cao thủ diễn đàn đều không thi nên mới có hiện tượng như thế :lol: Có gì lạ đâu ?mà hình như năm nay thi người ta thu luôn đề nên không post đầy đủ đề lên được :D
Vòng 2 không biết thế nào,chứ vòng 1 ra đề chuối lắm nhiều bạn làm được :) chán vãi :lol:


Các cao thủ diễn đàn không thi thì vẫn có những cao thủ khác mà anh.Chắc là giờ này đang ngồi soát lại xem có sai chỗ nào không rồi mới lên diễn đàn post đề :in
CUỘC ĐỜI LÀ VÔ VÀN NHỮNG KHÓ KHĂN
CHÚNG TA CẦN PHẢI BIẾT VƯỢT QUA NHỮNG KHÓ KHĂN ĐÓ CHÍNH TRÊN ĐÔI CHÂN CỦA MÌNH

#15 let

let

    Binh nhì

  • Thành viên
  • 12 Bài viết

Đã gửi 30-03-2008 - 17:00

Có ai post luôn đề ngày 1 lên được không?

#16 ksipi

ksipi

    Binh nhất

  • Thành viên
  • 38 Bài viết

Đã gửi 30-03-2008 - 18:26

Đây là đề thi chọn đội tuyển Việt Nam 2008 định dạng PDF

Đánh giá đề năm nay tương đối khó.

Không biết tình hình các bạn làm thế nào. Mọi người có lời giải của các bài post cho anh em tham khảo nhé.

Tớ yếu hình nên chẳng biết 2 bài hình là khó hay dễ nữa, chứ bài đa thức có vẻ rất hợp gu. Bài tổ hợp số 6 nghe chừng không khó như mọi người tưởng.

File gửi kèm

  • File gửi kèm  Day_1.pdf   150.75K   472 Số lần tải
  • File gửi kèm  Day_2.pdf   157.97K   455 Số lần tải


#17 phtung

phtung

    Trung sĩ

  • Thành viên
  • 166 Bài viết

Đã gửi 30-03-2008 - 19:37

Bài số 3 ngày 2 có thể đổi sang đa thức rồi giải được không?

#18 Harry Potter

Harry Potter

    Kẻ Được Chọn

  • Hiệp sỹ
  • 286 Bài viết
  • Giới tính:Nam
  • Đến từ:SG
  • Sở thích:Stochastic Objects

Đã gửi 30-03-2008 - 20:01

Bài 3 ngày 2 có thể dùng hàm sinh để giải
Ps: Dạo này bận quá không quan tâm nhiều tới diễn đàn dược >.<

We will always have STEM with us. Some things will drop out of the public eye and will go away, but there will always be science, engineering, and technology. And there will always, always be mathematics.
 


#19 tanpham90

tanpham90

    Thượng sĩ

  • Thành viên
  • 218 Bài viết
  • Giới tính:Nam
  • Đến từ:TP Ho Chi Minh
  • Sở thích:Inequality

Đã gửi 30-03-2008 - 20:08

Đề thi chọn đội tuyển Việt Nam Ngày 1 (29/3/2008)

Bài 1 :
Trên mặt phẳng cho góc $xOy$ . Xét điểm $M$ thay đổi trên tia $Ox$ và điểm $N$ thay đổi trên tia $Oy$ . Kí hiệu $d$ là đường phân giác ngoài của góc $xOy$ và gọi $I$ là giao điểm của $d$ với đường trung trực của đoạn thẳng $MN$ . Trên $d$ lấy hai điểm $P$ và $Q$ sao cho : $IP=IQ=IM=IM=IN$ . Gọi $K$ là giao điểm của các đường thằng $MQ$ và $NP$ .
1/Chứng minh rằng $K$ luôn nằm trên một đường thằng cố định , khi $M$ và $N$ thay đổi trên $Ox$ và $Oy$ .
2/ Xét các điểm $M$ , $N$ trên các tia $Ox$ và $Oy$ sao cho đường thằng $d_1$ vuông góc với $IM$ tại $M$ và đường thằng $d_2$ vuông góc với $IN$ tại $N$ đều cắt đường thằng $d$ . Gọi $E$ , $F$ tưong ứng là giao điểm của $d_1$ , $d_2$ . Chứng minh rằng các đừong thẳng $EN$ ; $FM$ và $OK$ đồng quy .

Bài 2 :
Hãy xác định tất cả các số nguyên dương $m$ sao cho tồn tại các đa thức với hệ số thực $P(x)$ , $Q(x)$ , $R(x,y)$ thỏa mãn điều kiện : Với mọi số thực $a,b$ mà $a^{m}-b^{2}=0$ , ta luôn có :
$P(R(a,b))=a$ và $Q(R(a,b))=b$

Bài 3 :
Cho số nguyện $n >3$ . Ki hiệu $T$ là tập hơp gồm $n$ số nguyện dương đầu tiên . Một tập con $S$ của $T$ được gọi là tập khuyết trong $T$ nếu $S$ có tính chất : Tồn tại số nguyện dương $c$ không vượt quá $\dfrac{n}{2}$ sao cho với $s_{1}$ , $s_{2}$ là hai số bất kỳ thuộc $S$ ta luôn có : $|s_{1}-s_{2}| \neq c$ hỏi tập khuyết trong $T$ có thể có tối đa bao nhiêu phần tử .

Đề thi chọn đội tuyển Việt Nam Ngày 2 (30/3/2008)


Bài 4 :

Cho $m$ và $n$ là các số nguyên dương . Chứng minh rằng $(2m+3)^n+1 \vdots (6m) \Leftrightarrow (3^n+1) \vdots (4m)$

Bài 5 :

Tam giác $ABC$ có phân giác $AD$ , $BE$ , $CF$ , $k$ là số thực dương cho trước . Trên $AD$ , $BE$ , $CF$ lần lượt lấy các điểm $L$ , $M$ , $N$ sao cho $\large \dfrac{AL}{AD}=\dfrac{BM}{BE}=\dfrac{CN}{CF}=k$ . $(O_1)$ là đường tròn qua $A$ , $L$ và tiếp xúc với $OA$ tại $A$ với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$ . $(O_2)$ , $(O_3)$ cũng xác định tương tự

a) Cho $k=1/2$ chứng minh $(O_1)$ , $(O_2)$ , $(O_3)$ có đúng $2$ điểm chung và trọng tâm $G$ của tam giác $ABC$ nằm trên đường thằng đi qua $2$ điểm chung đó .

b) Hãy xác định tất cả các giá trị của $k$ để ba đường tròn $(O_1)$ , $(O_2)$ , $(O_3)$ có đúng hai điểm chung .

Bài 6 :
Cho $M$ là tập hợp của $2008$ số nguyên dương đầu tiên , mỗi số đó được tô bởi một trong $3$ màu : xanh , đỏ và vàng , và mỗi màu thì được tô ít nhất một số , xét $2$ tập :

$S_{1}=$ { $(x,y,z)$ thuộc $M^{3}$ mà $x$ , $y$ , $z$ tô cùng màu , $x+y+z \equiv 0 (mod 2008)$ }

$S_{2}=$ { $(x,y,z)$ thuộc $M^{3}$ mà $x$ , $y$ , $z$ tô khác màu nhau , $x+y+z \equiv 0 (mod 2008)$ }

Chứng minh rẳng : $2|S_{1}| > |S_{2}|$

Bài viết đã được chỉnh sửa nội dung bởi tanpham90: 30-03-2008 - 20:10

Chuyên toán ----- ĐHSP-TPHCM ----- 05-08

#20 tanlsth

tanlsth

    Tiến Sĩ Diễn Đàn Toán

  • Hiệp sỹ
  • 1428 Bài viết
  • Giới tính:Nam
  • Đến từ:Japan

Đã gửi 30-03-2008 - 20:39

Sơ qua bài cuối tí

Đặt $ A,B,C $ lần lượt là các tập chứa các phần tử cùng màu của $ M $

Xét $ P(x)= \sum_{a \in A} x^a , Q(x)= \sum_{b \in B} x^b , R(x)= \sum_{c \in C} x^c $

Gọi tập nghiệm của phương trình $ x^{2008}-1=0 $ là $ T $

Khi đó ta có $ |S_1|= \dfrac{1}{2008}\sum_{t \in T} (P^3(t)+Q^3(t)+R^3(t)) $

$ |S_2|=\dfrac{6}{2008}\sum_{t \in T} (P(t).Q(t).R(t)) $

Lại có với mọi $ t \in T-\{1\}$ thì $ P(t)+Q(t)+R(t)=0 $ nên $ P^3(t)+Q^3(t)+R^3(t)=3P(t)Q(t)R(t) $

Còn $ P^3(1)+Q^3(1)+R^3(1) > 3P(1)Q(1)R(1) $ (vì $ 2008 \no \vdots 3 $) nên suy ra ta có kết quả $ 2|S_1| > |S_2| $

Learn from yesterday,live for today,hope for tomorrow
The important thing is to not stop questioning





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh