Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

thêm một bài nữa


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 onlyloveyouonly

onlyloveyouonly

    Trung sĩ

  • Thành viên
  • 101 Bài viết
  • Giới tính:Nam

Đã gửi 26-05-2008 - 22:24

cho a,b,c $\geq 0.CMR: \dfrac{ a^{3} }{ 2a^{2} + b^{2}} + \dfrac{ b^{3} }{ 2b^{2}+ c^{2}} + \dfrac{ c^{3} }{ 2c^{3}+ a^{2}} \geq \dfrac{a+b+c}{3} $

Bài viết đã được chỉnh sửa nội dung bởi onlyloveyouonly: 26-05-2008 - 22:26

I will do all thing for a person who I love

#2 quangghePT1

quangghePT1

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Đến từ:Ngoại ô thành phố Hà Nội ... :D
  • Sở thích:Ăn uống , ngủ nghỉ , tất nhiên ...

Đã gửi 27-05-2008 - 10:13

cho a,b,c $\geq 0.CMR: \dfrac{ a^{3} }{ 2a^{2} + b^{2}} + \dfrac{ b^{3} }{ 2b^{2}+ c^{2}} + \dfrac{ c^{3} }{ 2c^{2}+ a^{2}} \geq \dfrac{a+b+c}{3} $


$\dfrac{2a^3}{2a^2+b^2}=\dfrac{a(2a^2+b^2-b^2)}{2a^2+b^2}=a-\dfrac{ab^2}{2a^2+b^2}\geq a-\dfrac{b}{3}$

#3 ongtrum

ongtrum

    Lính mới

  • Thành viên
  • 9 Bài viết

Đã gửi 30-05-2008 - 00:41

$\dfrac{2a^3}{2a^2+b^2}=\dfrac{a(2a^2+b^2-b^2)}{2a^2+b^2}=a-\dfrac{ab^2}{2a^2+b^2}\geq a-\dfrac{b}{3}$

anh quanghe à,nếu nói như anh thi`$ 2a^{2}+b^{2} \geq 3ab$
vậy anh thử a=1, b=1,5 thử cái đó còn đúng ko

#4 zaizai

zaizai

    Tiến sĩ diễn đàn toán

  • Thành viên
  • 1380 Bài viết
  • Đến từ:Quảng Trị
  • Sở thích:giải toán(đặc biệt là Bất đẳng thức), đá bóng <br>đội bóng yêu thích là Man utd

Đã gửi 30-05-2008 - 07:17

Đây là bài 2.94 trong sách Sáng tạo Bất đẳng thức của anh Hùng :leq Lời giải sử dụng SOS khá phức tạp và khó. Cách của quanghePT1 hình như sai rồi :leq

#5 vuthanhtu_hd

vuthanhtu_hd

    Tiến sĩ Diễn Đàn Toán

  • Hiệp sỹ
  • 1189 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Dương
  • Sở thích:ngủ ^^

Đã gửi 31-05-2008 - 11:07

Nhìn lời giải sai của quangghePT1 tưởng dễ ai ngờ bài này khá phức tạp

Bài viết đã được chỉnh sửa nội dung bởi vuthanhtu_hd: 31-05-2008 - 11:08

Nếu một ngày bạn cảm thấy buồn và muốn khóc,hãy gọi cho tôi nhé.
Tôi không hứa sẽ làm cho bạn cười nhưng có thể tôi sẽ khóc cùng với bạn.
Nếu một ngày bạn muốn chạy chốn tất cả hãy gọi cho tôi.
Tôi không yêu cầu bạn dừng lại nhưng tôi sẽ chạy cùng với bạn.
Và nếu một ngày nào đó bạn không muốn nghe ai nói nữa,hãy gọi cho tôi nhé.
Tôi sẽ đến bên bạn và chỉ im lặng.
Nhưng nếu một ngày bạn gọi đến tôi mà không thấy tôi hồi âm...
Hãy chạy thật nhanh đến bên tôi vì lúc đó tôi mới là người cần bạn.

______________________
__________________________________
Vu Thanh TuUniversity of Engineering & Technology





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh