Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Một kĩ thuật chứng minh B.Đ.T


  • Please log in to reply
Chủ đề này có 105 trả lời

#21 PRONOOBCHICKENHANDSOME

PRONOOBCHICKENHANDSOME

    Thượng sĩ

  • Thành viên
  • 227 Bài viết
  • Giới tính:Nam

Đã gửi 31-10-2011 - 18:26

mình cảm thấy lời giải này không được tự nhiên cho lắm :unsure:

ko phải là k tự nhiên mà rõ ràng là lời giải đấy sai bét .

#22 HÀ QUỐC ĐẠT

HÀ QUỐC ĐẠT

    Thượng sĩ

  • Thành viên
  • 295 Bài viết
  • Giới tính:Nam
  • Đến từ:12C THPT NINH GIANG-ĐẠI HỌC XÂY DỰNG

Đã gửi 31-10-2011 - 18:51

Bài 1
Ta sẽ chứng minh$ a^{2}+b^{2}\geq \left | a+b \right |\Leftrightarrow \left | a+b \right |^{2}-\left | a+b \right |-2ab\geq 0$(1)
Đặt t= $\left | a+b \right |\Rightarrow t\geq 2\Rightarrow (1)\Leftrightarrow t^{2}-t-2ab\geq 0$
VT$\geq t^{2}-t-\dfrac{t^{2}}{2}=\dfrac{t(t-2)}{2}\geq 0$
$\Rightarrow a^{2}+b^{2}\geq \left | a+b \right |\geq a+b$
Dấu"=" xảy ra khi a=b=1

Bài viết đã được chỉnh sửa nội dung bởi HÀ QUỐC ĐẠT: 31-10-2011 - 19:08


#23 Mai Duc Khai

Mai Duc Khai

    Thiếu úy

  • Thành viên
  • 617 Bài viết
  • Giới tính:Nam
  • Đến từ:Thanh Hóa

Đã gửi 31-10-2011 - 19:48

Anh nào cho cái topic này vào một file để e dow về với!

Tra cứu công thức toán trên diễn đàn


Học gõ Latex $\to$ Cách vẽ hình trên VMF


Điều mà mọi thành viên VMF cần phải biết và tuân thủ

______________________________________________________________________________________________

‎- Luật đời dạy em cách Giả Tạo
- Đời xô ... Em ngã
- Đời nham ... Em hiểm

- Đời chuyển ... Em xoay

Đời cay ... Em đắng


#24 xuanhung

xuanhung

    Binh nhất

  • Thành viên
  • 38 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Lê Quí Đôn, Vĩnh Long

Đã gửi 25-12-2011 - 21:35

BT áp dụng.Bài 1. Cho $a,b\in R,ab \geq 1$.CM $a^{2}+b^{2} \geq a+b$
Bài 2.Cho $x,y\in R, x+y=3,x \leq 1$.CM
a)$x^{3}+y^{3} \geq 9$
b)$2x^{4}+y^{4} \geq 18$
Bài 3.Cho $x,y>0$ thỏa mãn $x+y=1$
Tìm GTNN của $P= \dfrac{1}{x^{2}+y^{2}}+\dfrac{3}{4xy}$
Bài 4 Cho $a,b \in R,a+b>8 ,b>3$
CMR $27a^{2}+10b^{3}>945$

Bài 1
$a^{2}+b^{2}\geq a+b \Leftrightarrow a^{4}+b^{4}+2\geq a^{2}+b^{2}+2 \Leftrightarrow a^{4}+b^{4}-(a^{2}+b^{2})\geq 0$ (1)
Đặt A=$a^{4}+b^{4}, B=a^{2}+b^{2}$
Theo BDT Cauchy thì
A$\geq 2, B\geq 2$
Suy ra A-B$\geq 2-2 = 0$
VẬy (1) đúng
Đây là lần đầu em tham gia xin mấy anh chỉ bảo góp ý
Sau đây là đóng góp của em
1/ Cho x$> y$, xy=1
CMR: $(x^{2}+y^{2})^{2} \geq 8(x-y)^{2}$ (Tính luôn cách trên của em thì có tới 4 cách giải, mấy anh có cách nào hay thì post lên cho em tham khảo với)
2/Cho x,y dương và x+y=8
Tìm GTNN của biểu thức
P=$\dfrac{1}{x+4}+\dfrac{1}{y+4}$
3/Tìm GTNN của
E=$\dfrac{2x^{2}+12x+16}{x^{2}+6x+11}$

Bài viết đã được chỉnh sửa nội dung bởi xuanhung: 25-12-2011 - 21:44

Doesn't mean the all

Doesn't mean nothing

Doesn't mean the best

Doesn't mean the worst


#25 xuanhung

xuanhung

    Binh nhất

  • Thành viên
  • 38 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Lê Quí Đôn, Vĩnh Long

Đã gửi 25-12-2011 - 22:07

BT áp dụng.Bài 1. Cho $a,b\in R,ab \geq 1$.CM $a^{2}+b^{2} \geq a+b$
Bài 2.Cho $x,y\in R, x+y=3,x \leq 1$.CM
a)$x^{3}+y^{3} \geq 9$
b)$2x^{4}+y^{4} \geq 18$
Bài 3.Cho $x,y>0$ thỏa mãn $x+y=1$
Tìm GTNN của $P= \dfrac{1}{x^{2}+y^{2}}+\dfrac{3}{4xy}$
Bài 4 Cho $a,b \in R,a+b>8 ,b>3$
CMR $27a^{2}+10b^{3}>945$

Bài 4:
Ta có: a+b>8 suy ra a>8-b
Mà $27a^{2}+10b^{3}> 27(8-3)^{2}+10\times 3^{3}=945$
suy ra $27a^{2}+10b^{3}> 945$

Bài viết đã được chỉnh sửa nội dung bởi xuanhung: 26-12-2011 - 21:01

Doesn't mean the all

Doesn't mean nothing

Doesn't mean the best

Doesn't mean the worst


#26 hoangtrangnhung

hoangtrangnhung

    Lính mới

  • Thành viên
  • 1 Bài viết
  • Giới tính:Nữ

Đã gửi 17-05-2012 - 11:01

các cách giải của mọi người rất hay. Nhưng ở 1 số vd như vd2 tại sao lại nghĩ ra cách đấy ạ
Xin chào các bạn, mình tên là Hoàng Trang Nhung, sinh ngày 2/1/1998 học sinh lớp 8B trường THCS Đồng Giao - thị xã Tam Điệp - tỉnh Ninh Bình. Mình rất vui được biết và làm quen với tất cả các bạn. Các bạn liên hệ với mình qua nick chat yahoo: "hoangtrangnhung_98" nhé!!!

#27 leduykhuong1995

leduykhuong1995

    Lính mới

  • Thành viên
  • 3 Bài viết

Đã gửi 18-05-2012 - 00:15

Cách này được sử dụng trong thi đại học ko bạn?

#28 vietfrog

vietfrog

    Trung úy

  • Hiệp sỹ
  • 947 Bài viết
  • Giới tính:Nam
  • Đến từ:Kẻ Sặt_ Hải Dương
  • Sở thích:Kìa chú là chú ếch con có hai là hai mắt tròn....

Đã gửi 18-05-2012 - 00:25

Cách này được sử dụng trong thi đại học ko bạn?

Đây là phương pháp chứng minh BĐT việc đặt ẩn phụ và các phép biến đổi đại số linh hoạt, phù hợp với cấp THCS.
Vì thế trong thi Đại học có thể sử dụng được nếu muốn :D .

Sống trên đời

Cần có một tấm lòng

Để làm gì em biết không?

Để gió cuốn đi...

Chủ đề:BĐT phụ

HOT: CÁCH VẼ HÌNH


#29 NosoZ

NosoZ

    Binh nhất

  • Thành viên
  • 24 Bài viết
  • Giới tính:Nam

Đã gửi 30-08-2012 - 09:53

Anh nào cho cái topic này vào một file để e dow về với!

Có Link dự phòng Mediafire ngay đầu đó mấy bạn: http://www.mediafire.com/?2quemyqynoy
Đi sau đến muộn--->Đang làm quen và sục sạo khắp nơi trên diễn đàn!

#30 nth1235

nth1235

    Trung sĩ

  • Thành viên
  • 120 Bài viết
  • Giới tính:Nam
  • Đến từ:10A1 - THPT Thống Nhất A

Đã gửi 30-08-2012 - 10:13

Bài 3 phần bài tập áp dụng :
Chúng ta sẽ dùng phương pháp điểm rơi để giải quyết bài toán.
Áp dụng BĐT AM - GM, ta có :
$\frac{1}{x^2 + y^2} + 4.(x^2 + y^2) \geq 4$
$\frac{3}{4xy} + 12xy \geq 6$
Cộng vế theo vế của hai BĐT trên, ta được :
$ P \geq 10 - 4.(x^2 + y^2) - 4xy = 10 - 4.(x + y)^2 - 4xy = 6 - 4xy \geq 5$ (Do $xy \geq \frac{(x + y)^2}{4} = \frac{1}{4}$)
Vậy $ Min P = 5 \Leftrightarrow x = y = \frac{1}{2}$

Bài viết đã được chỉnh sửa nội dung bởi nth1235: 30-08-2012 - 10:15


#31 nth1235

nth1235

    Trung sĩ

  • Thành viên
  • 120 Bài viết
  • Giới tính:Nam
  • Đến từ:10A1 - THPT Thống Nhất A

Đã gửi 30-08-2012 - 10:23

2/Cho x,y dương và x+y=8
Tìm GTNN của biểu thức
P=$\dfrac{1}{x+4}+\dfrac{1}{y+4}$
3/Tìm GTNN của
E=$\dfrac{2x^{2}+12x+16}{x^{2}+6x+11}$

2. Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
$P = \dfrac{1}{x+4}+\dfrac{1}{y+4} \geq \frac{(1 + 1)^2}{x + y + 8} = \frac{4}{16} = \frac{1}{4}.$
Vậy $Min P = \frac{1}{4} \Leftrightarrow x = y = 4$
3.Ta có :
$E=\dfrac{2x^{2}+12x+16}{x^{2}+6x+11} = 2 - \frac{6}{(x + 3)^2 + 2} = -1.$
Vậy $ Min P = -1 \Leftrightarrow x = -3$.

Bài viết đã được chỉnh sửa nội dung bởi nth1235: 30-08-2012 - 10:24


#32 vietyeu

vietyeu

    Lính mới

  • Thành viên
  • 2 Bài viết

Đã gửi 18-12-2012 - 14:40

File hỏng mất rồi bạn ơi, loading lại giúp mình nhé! hay nhat

Bài viết đã được chỉnh sửa nội dung bởi vietyeu: 18-12-2012 - 14:40


#33 HoangAnh1995

HoangAnh1995

    Lính mới

  • Thành viên
  • 1 Bài viết
  • Giới tính:Nam

Đã gửi 26-12-2012 - 13:34

phương pháp này khá sáng tạo, nhưng cũng thấy rắc rối quá

#34 BoFaKe

BoFaKe

    Thiếu úy

  • Thành viên
  • 613 Bài viết
  • Giới tính:Nam
  • Đến từ:Sicily Italia !

Đã gửi 27-12-2012 - 20:36

Bài 1
$a^{2}+b^{2}\geq a+b \Leftrightarrow a^{4}+b^{4}+2\geq a^{2}+b^{2}+2 \Leftrightarrow a^{4}+b^{4}-(a^{2}+b^{2})\geq 0$ (1)
Đặt A=$a^{4}+b^{4}, B=a^{2}+b^{2}$
Theo BDT Cauchy thì
A$\geq 2, B\geq 2$
Suy ra A-B$\geq 2-2 = 0$

VẬy (1) đúng

Chỗ này làm sao được trừ 2 bất đẳng thức cùng chiều.:)
~~~~~~~~~~~~~~Tiếc gì mà không click vào nút like mọi ngươì nhỉ ^0^~~~~~~~~~~~~~

#35 duybigbangvip

duybigbangvip

    Binh nhì

  • Thành viên
  • 11 Bài viết

Đã gửi 12-03-2013 - 21:17

Bài toán BĐT thường là nội dung khó với các bạn học sinh trung học cơ sở. Một lí do đơn giản vì đây là dạng toán ''mới mẻ'' với các bạn và khi giải các bài toán BĐT các bạn thường cảm thấy ''lúng túng'' không biết phải sử dụng phương pháp gì?Tuy nhiên, trong nhiều bài toán BĐT có điều kiện chúng ta có thể dựa vào điều kiện của biến để đặt ẩn phụ đưa bài toán về dạng đơn giản có thể đánh giá được trực tiếp mà không cần sử dụng đến các công cụ ''đao to búa lớn''. Bài viết dưới đây dựa trên ý tưởng của My Teacher - thầy Hoàng Văn Đắc. Chúng ta bắt đầu với một bài toán đơn giản sau

Ví dụ 1. CMR Với $a,b \in R$ và $a+b=4$ thì $a^{4}+b^{4} \geq 32$

Nhận xét rằng một biểu thức nhiều biến thường đạt giá trị lớn nhất hay nhỏ nhất khi tất cả các biến bằng nhau ( tổng quát hơn là trường hợp một số biến bằng nhau) hoặc một số biến có giá trị trên biên. Điều này gợi ý cho ta cách đổi biến như sau

Lời giải
Do $a+b=4$ nên có thể đặt $a=2+x,b=2-x$ với $x\in R$
Ta có $a^{4}+b^{4}=(2+x)^{4}+(2-x)^{4}=2x^{4}+48x^{2}+32 \geq 32$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi $x=0 \Leftrightarrow a=b=2$.
Như vậy bằng cách đổi biến thích hợp chúng ta đã đưa bài toán về dạng đơn giản có thể đánh giá trực tiếp được và BĐT chúng ta sử dụng chỉ là BĐT cơ bản nhất $x^{2} \geq 0, \forall x\in R$

Tiếp theo chúng ta xem xét một vài ví dụ khác. Qua đó hi vọng các bạn học sinh THCS sẽ có được một cách nhìn mới với những bài toán BĐT kiểu này.

Ví dụ 2. Cho $a,b \in R$ thỏa mãn $a+b \geq 2$. CMR
$$a^{3}+b^{3} \leq a^{4}+b^{4}$$

Lời giải.
Đặt $a=1+x,b=1+y$. Từ $a+b \geq 2$ ta có $x+y \geq 0$
BĐT cần chứng minh tương đương với
$$(1+x)^{3}+(1+y)^{3} \leq (1+x)^{4}+(1+y)^{4}$$

$\Leftrightarrow x(1+x)^{3}+y(1+y)^{3} \geq0$

$\Leftrightarrow x^{4}+y^{4}+3(x+y)(x^{2}-xy+y^{2})+3(x^{2}+y^{2})+x+y \geq 0$
(BĐT này đúng vì $x+y \geq 0$)
Đẳng thức xảy ra khi và chỉ khi:
$$ x=y=0 \Leftrightarrow a=b=1$$.

Ví dụ 3. Cho $a,b,c\in R$ thỏa mãn $a+b+c=3$. CMR
$$a^{2}+b^{2}+c^{2}+ab+bc+ca \geq 6$$

Lời giải.
Vì $a+b+c=3$ nên có thể đặt $a=1+x ,b=1+y, c=1-x-y$ với $x,y \in R$
Ta có
$$a^{2}+b^{2}+c^{2}+ab+bc+ca=(1+x)^{2}+(1+y)^{2}+(1-x-y)^{2}+$$
$$+(1-x)(1-y)+(1-y)(1-x-y)+(1-x-y)(1-x)$$
$$=x^{2}+xy+y^{2}+6=(x+\dfrac{y}{2})^{2}+\dfrac{3y^{2}}{4}+6\geq 6$$
Đó là đpcm.
Đẳng thức xảy ra khi và chỉ khi
$$ y=0,x+\dfrac{y}{2}=0 \Leftrightarrow a=b=c=1$$


Ví dụ 4. Cho $a,b,c,d\in R$ thỏa mãn $a+b+c+d=1$. CMR
$$(a+c)(b+d)+2ac+2bd \leq \dfrac{1}{2}$$

Lời giải.
Vì $a+b+c+d=1$ nên có thể đặt
$$a=\dfrac{1}{4}+x+z , b= \dfrac{1}{4}-x+z ,c=\dfrac{1}{4}+y-z ,d= \dfrac{1}{4}-y-z $$
Ta có
$VT=(a+c)(b+d)+2ac+2bd$
$ =(\dfrac{1}{2}+x+y)(\dfrac{1}{2}-x-y)+2(\dfrac{1}{4}+x+z)(\dfrac{1}{4}+y-z)+2(\dfrac{1}{4}-x+z)(\dfrac{1}{4}-y-z)$

$= \dfrac{1}{2}-(x-y)^{2}-4z^{2} \leq \dfrac{1}{2}$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi
$$ x-y=0,z=0 \Leftrightarrow a=c ,b=d$$

Ví dụ 5. Cho $a,b,c,d\in R$ thỏa mãn $a+b=c+d$. CMR
$$c^{2}+d^{2}+cd \geq 3ab$$

Lời giải.
Do $a+b=c+d$ nên ta đặt $c=a+x , d=b-x$ với $x\in R$
Ta có
$$c^{2}+d^{2}+cd =(a+x)^{2}+(b-x)^{2}+(a+x)(b-x)=(a-b+\dfrac{x}{2})^{2}+\dfrac{3x^{2}}{4}+3ab\geq 3ab$$
Đẳng thức xảy ra khi và chỉ khi
$$a-b+\dfrac{x}{2}=x=0 \Leftrightarrow a=b=c=d$$

Ví dụ 6. Cho $x,y\in R,x<2$ và $x+y>5$. CMR
$$5x^{2}+2y^{2}+8y>62$$
Lời giải.
Vì $x<2,x+y>5$ nên ta đặt $x=2- t , x+y=5+u$ ($t,u >0$)
$$5x^{2}+2y^{2}+8y=5(2-t)^{2}+2(3+t+u)^{2}+8(3+t+u)=62+2(t+u)^{2}+5t^{2}+20u>62$$
Ta có đpcm

Ví dụ 7. Cho$ x,y\in R ,x \leq 1 ,x+y \geq 3$. Tìm GTNN của $F= 3x^{2}+y^{2}+3xy$
Lời giải.
Đặt $x=1-a, x+y =3+b$ thì $y=2+a+b;a,b \geq 0 $
Ta có
$3x^{2}+y^{2}+3xy=3(1-a)^{2}+(2+a+b)^{2}+3(1-a)(2+a+b)$
$=a^{2}+b^{2}-5a+7b-ab+13$
$=(a-\dfrac{b}{2}-\dfrac{5}{2})^{2}+\dfrac{3b^{2}}{4}+\dfrac{9b}{2}+\dfrac{27}{4} \geq \dfrac{27}{4}$
Đẳng thức xảy ra khi và chỉ khi:
$$ a=\dfrac{5}{2},b=0 \Leftrightarrow x=\dfrac{-3}{2},y=\dfrac{9}{2}$$

Ví dụ 8 Cho $x,y \in R,x+y=3 ,x \leq 1$. CMR
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y \geq 0$$

Lời giải.
Đặt $x=1-w$ thì $y=2+w$($w \geq 0$)
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y\geq0 \Leftrightarrow (2+w)^{3}-(1-w)^{3}-6(2+w)^{2}-(1-w)^{2}+9(2+w) \geq0 $$
$\Leftrightarrow w(w-1)^{2} \geq 0$ (đúng)
Đẳng thức xảy ra khi và chỉ khi
$$ w \in$ \{0;1\} \Leftrightarrow (x;y)\in \{(1;2),(0;3)\}$$

Lời kết. Như vậy với việc đổi biển khéo léo ta có thể đưa việc xét một biểu thức phức tạp về một biểu thức đơn giản hơn,phù hợp với trình độ THCS. Những VD trên là đơn giản (không có VD nào có thể coi là khó!)và những lời giải trên là để minh họa cho kĩ thuật nên có thể chưa phải là Lời giải hay nhất,ngắn gọn nhất. Tác giả cho rằng việc đưa ra quá nhiều VD sẽ chỉ nhàm chán và vô vị ,vì vậy chỉ đưa ra vài VD đơn giản để bạn đọc có thể nắm bắt được ý tưởng nhanh chóng. Khi đã nắm bắt được ý tưởng ,bạn hoàn toàn có thể ''đánh bay'' một lớp các bài toán như vậy và đương nhiên bạn cũng có thể tự tạo ra các bài toán kiểu này. Dưới đây cũng là những BT đơn giản để các bạn thử nghiệm!

BT áp dụng.
Bài 1. Cho $a,b\in R,ab \geq 1$.CM $a^{2}+b^{2} \geq a+b$
Bài 2.Cho $x,y\in R, x+y=3,x \leq 1$.CM
a)$x^{3}+y^{3} \geq 9$
b)$2x^{4}+y^{4} \geq 18$

Bài 3.Cho $x,y>0$ thỏa mãn $x+y=1$
Tìm GTNN của $P= \dfrac{1}{x^{2}+y^{2}}+\dfrac{3}{4xy}$

Bài 4 Cho $a,b \in R,a+b>8 ,b>3$
CMR $27a^{2}+10b^{3}>945$

cách giải khác VD5
Ta có : $3ab\leqslant \tfrac{3}{4}(a+b)^2=\tfrac{3}{4}(c+d)^2\leqslant c^2+d^2+cd$
(Luôn đúng với mọi a,b,c,d $\epsilon \mathbb{R}$)
Dấu = xảy ra khi c=d
CMTT ta cũng có $3cd\leqslant a^2+b^2+ab$.dấu = xảy ra khi a=b

#36 nguyensidang

nguyensidang

    Binh nhất

  • Thành viên
  • 32 Bài viết

Đã gửi 19-03-2013 - 12:28

Bài 3 tách điểm rơi rồi dùng Schwarz lãm sao cho dưới mẫu xuất hiện x^2+y^2+2xy, cái còn lại dùng AM-GM

(thông cảm, mày mình bị lỗi, ko hiện biểu tượng gõ Latex)


Bài viết đã được chỉnh sửa nội dung bởi nguyensidang: 19-03-2013 - 12:28


#37 Trang Luong

Trang Luong

    Đại úy

  • Thành viên
  • 1834 Bài viết
  • Giới tính:Nam
  • Đến từ:$ \heartsuit \int_{K48}^{HNUE}\heartsuit $

Đã gửi 03-04-2013 - 21:36

Cho a,b,c > 0. Cmr: $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}$


"Nếu bạn hỏi một người giỏi trượt băng làm sao để thành công, anh ta sẽ nói với bạn: ngã, đứng dậy là thành công"
Issac Newton

#38 4869msnssk

4869msnssk

    Bá tước

  • Thành viên
  • 549 Bài viết
  • Giới tính:Không khai báo

Đã gửi 09-04-2013 - 17:57

Cho a,b,c > 0. Cmr: $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}$

ta có: $\frac{3}{a+b}=\frac{1}{\frac{a}{3}+2\frac{b}{6}}\leq \frac{1}{\frac{\frac{3}{a}+\frac{6}{b}+\frac{6}{b}}{9}}=\frac{1}{a}+\frac{4}{3b}$(BĐT côsi)

CMTT rồi cộng vào ta có: $\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\leq \frac{1}{a}+\frac{4}{3b}+\frac{2}{3b}+2c+c+\frac{2}{3a}$

BĐT đã đc chứng minh


 B.F.H.Stone


#39 Trang Luong

Trang Luong

    Đại úy

  • Thành viên
  • 1834 Bài viết
  • Giới tính:Nam
  • Đến từ:$ \heartsuit \int_{K48}^{HNUE}\heartsuit $

Đã gửi 09-04-2013 - 19:39

Cho $a,b,c,d\geq 0$ $a+b+c+d=1$. Tìm max$P=\left | a-b \right |+\left | a-c \right |+\left | a-d \right |+\left | b-c \right |+\left | b-d \right |+\left | c-d \right |$


"Nếu bạn hỏi một người giỏi trượt băng làm sao để thành công, anh ta sẽ nói với bạn: ngã, đứng dậy là thành công"
Issac Newton

#40 pro1stvip

pro1stvip

    Binh nhì

  • Thành viên
  • 16 Bài viết

Đã gửi 15-04-2013 - 12:07

Bài toán BĐT thường là nội dung khó với các bạn học sinh trung học cơ sở. Một lí do đơn giản vì đây là dạng toán ''mới mẻ'' với các bạn và khi giải các bài toán BĐT các bạn thường cảm thấy ''lúng túng'' không biết phải sử dụng phương pháp gì?Tuy nhiên, trong nhiều bài toán BĐT có điều kiện chúng ta có thể dựa vào điều kiện của biến để đặt ẩn phụ đưa bài toán về dạng đơn giản có thể đánh giá được trực tiếp mà không cần sử dụng đến các công cụ ''đao to búa lớn''. Bài viết dưới đây dựa trên ý tưởng của My Teacher - thầy Hoàng Văn Đắc. Chúng ta bắt đầu với một bài toán đơn giản sau

Ví dụ 1. CMR Với $a,b \in R$ và $a+b=4$ thì $a^{4}+b^{4} \geq 32$

Nhận xét rằng một biểu thức nhiều biến thường đạt giá trị lớn nhất hay nhỏ nhất khi tất cả các biến bằng nhau ( tổng quát hơn là trường hợp một số biến bằng nhau) hoặc một số biến có giá trị trên biên. Điều này gợi ý cho ta cách đổi biến như sau

Lời giải
Do $a+b=4$ nên có thể đặt $a=2+x,b=2-x$ với $x\in R$
Ta có $a^{4}+b^{4}=(2+x)^{4}+(2-x)^{4}=2x^{4}+48x^{2}+32 \geq 32$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi $x=0 \Leftrightarrow a=b=2$.
Như vậy bằng cách đổi biến thích hợp chúng ta đã đưa bài toán về dạng đơn giản có thể đánh giá trực tiếp được và BĐT chúng ta sử dụng chỉ là BĐT cơ bản nhất $x^{2} \geq 0, \forall x\in R$

Tiếp theo chúng ta xem xét một vài ví dụ khác. Qua đó hi vọng các bạn học sinh THCS sẽ có được một cách nhìn mới với những bài toán BĐT kiểu này.

Ví dụ 2. Cho $a,b \in R$ thỏa mãn $a+b \geq 2$. CMR
$$a^{3}+b^{3} \leq a^{4}+b^{4}$$

Lời giải.
Đặt $a=1+x,b=1+y$. Từ $a+b \geq 2$ ta có $x+y \geq 0$
BĐT cần chứng minh tương đương với
$$(1+x)^{3}+(1+y)^{3} \leq (1+x)^{4}+(1+y)^{4}$$

$\Leftrightarrow x(1+x)^{3}+y(1+y)^{3} \geq0$

$\Leftrightarrow x^{4}+y^{4}+3(x+y)(x^{2}-xy+y^{2})+3(x^{2}+y^{2})+x+y \geq 0$
(BĐT này đúng vì $x+y \geq 0$)
Đẳng thức xảy ra khi và chỉ khi:
$$ x=y=0 \Leftrightarrow a=b=1$$.

Ví dụ 3. Cho $a,b,c\in R$ thỏa mãn $a+b+c=3$. CMR
$$a^{2}+b^{2}+c^{2}+ab+bc+ca \geq 6$$

Lời giải.
Vì $a+b+c=3$ nên có thể đặt $a=1+x ,b=1+y, c=1-x-y$ với $x,y \in R$
Ta có
$$a^{2}+b^{2}+c^{2}+ab+bc+ca=(1+x)^{2}+(1+y)^{2}+(1-x-y)^{2}+$$
$$+(1-x)(1-y)+(1-y)(1-x-y)+(1-x-y)(1-x)$$
$$=x^{2}+xy+y^{2}+6=(x+\dfrac{y}{2})^{2}+\dfrac{3y^{2}}{4}+6\geq 6$$
Đó là đpcm.
Đẳng thức xảy ra khi và chỉ khi
$$ y=0,x+\dfrac{y}{2}=0 \Leftrightarrow a=b=c=1$$


Ví dụ 4. Cho $a,b,c,d\in R$ thỏa mãn $a+b+c+d=1$. CMR
$$(a+c)(b+d)+2ac+2bd \leq \dfrac{1}{2}$$

Lời giải.
Vì $a+b+c+d=1$ nên có thể đặt
$$a=\dfrac{1}{4}+x+z , b= \dfrac{1}{4}-x+z ,c=\dfrac{1}{4}+y-z ,d= \dfrac{1}{4}-y-z $$
Ta có
$VT=(a+c)(b+d)+2ac+2bd$
$ =(\dfrac{1}{2}+x+y)(\dfrac{1}{2}-x-y)+2(\dfrac{1}{4}+x+z)(\dfrac{1}{4}+y-z)+2(\dfrac{1}{4}-x+z)(\dfrac{1}{4}-y-z)$

$= \dfrac{1}{2}-(x-y)^{2}-4z^{2} \leq \dfrac{1}{2}$ (đpcm)
Đẳng thức xảy ra khi và chỉ khi
$$ x-y=0,z=0 \Leftrightarrow a=c ,b=d$$

Ví dụ 5. Cho $a,b,c,d\in R$ thỏa mãn $a+b=c+d$. CMR
$$c^{2}+d^{2}+cd \geq 3ab$$

Lời giải.
Do $a+b=c+d$ nên ta đặt $c=a+x , d=b-x$ với $x\in R$
Ta có
$$c^{2}+d^{2}+cd =(a+x)^{2}+(b-x)^{2}+(a+x)(b-x)=(a-b+\dfrac{x}{2})^{2}+\dfrac{3x^{2}}{4}+3ab\geq 3ab$$
Đẳng thức xảy ra khi và chỉ khi
$$a-b+\dfrac{x}{2}=x=0 \Leftrightarrow a=b=c=d$$

Ví dụ 6. Cho $x,y\in R,x<2$ và $x+y>5$. CMR
$$5x^{2}+2y^{2}+8y>62$$
Lời giải.
Vì $x<2,x+y>5$ nên ta đặt $x=2- t , x+y=5+u$ ($t,u >0$)
$$5x^{2}+2y^{2}+8y=5(2-t)^{2}+2(3+t+u)^{2}+8(3+t+u)=62+2(t+u)^{2}+5t^{2}+20u>62$$
Ta có đpcm

Ví dụ 7. Cho$ x,y\in R ,x \leq 1 ,x+y \geq 3$. Tìm GTNN của $F= 3x^{2}+y^{2}+3xy$
Lời giải.
Đặt $x=1-a, x+y =3+b$ thì $y=2+a+b;a,b \geq 0 $
Ta có
$3x^{2}+y^{2}+3xy=3(1-a)^{2}+(2+a+b)^{2}+3(1-a)(2+a+b)$
$=a^{2}+b^{2}-5a+7b-ab+13$
$=(a-\dfrac{b}{2}-\dfrac{5}{2})^{2}+\dfrac{3b^{2}}{4}+\dfrac{9b}{2}+\dfrac{27}{4} \geq \dfrac{27}{4}$
Đẳng thức xảy ra khi và chỉ khi:
$$ a=\dfrac{5}{2},b=0 \Leftrightarrow x=\dfrac{-3}{2},y=\dfrac{9}{2}$$

Ví dụ 8 Cho $x,y \in R,x+y=3 ,x \leq 1$. CMR
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y \geq 0$$

Lời giải.
Đặt $x=1-w$ thì $y=2+w$($w \geq 0$)
$$y^{3}-x^{3}-6y^{2}-x^{2}+9y\geq0 \Leftrightarrow (2+w)^{3}-(1-w)^{3}-6(2+w)^{2}-(1-w)^{2}+9(2+w) \geq0 $$
$\Leftrightarrow w(w-1)^{2} \geq 0$ (đúng)
Đẳng thức xảy ra khi và chỉ khi
$$ w \in$ \{0;1\} \Leftrightarrow (x;y)\in \{(1;2),(0;3)\}$$

Lời kết. Như vậy với việc đổi biển khéo léo ta có thể đưa việc xét một biểu thức phức tạp về một biểu thức đơn giản hơn,phù hợp với trình độ THCS. Những VD trên là đơn giản (không có VD nào có thể coi là khó!)và những lời giải trên là để minh họa cho kĩ thuật nên có thể chưa phải là Lời giải hay nhất,ngắn gọn nhất. Tác giả cho rằng việc đưa ra quá nhiều VD sẽ chỉ nhàm chán và vô vị ,vì vậy chỉ đưa ra vài VD đơn giản để bạn đọc có thể nắm bắt được ý tưởng nhanh chóng. Khi đã nắm bắt được ý tưởng ,bạn hoàn toàn có thể ''đánh bay'' một lớp các bài toán như vậy và đương nhiên bạn cũng có thể tự tạo ra các bài toán kiểu này. Dưới đây cũng là những BT đơn giản để các bạn thử nghiệm!

BT áp dụng.
Bài 1. Cho $a,b\in R,ab \geq 1$.CM $a^{2}+b^{2} \geq a+b$
Bài 2.Cho $x,y\in R, x+y=3,x \leq 1$.CM
a)$x^{3}+y^{3} \geq 9$
b)$2x^{4}+y^{4} \geq 18$

Bài 3.Cho $x,y>0$ thỏa mãn $x+y=1$
Tìm GTNN của $P= \dfrac{1}{x^{2}+y^{2}}+\dfrac{3}{4xy}$

Bài 4 Cho $a,b \in R,a+b>8 ,b>3$
CMR $27a^{2}+10b^{3}>945$






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh