Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Bài rất khó


  • Please log in to reply
Chủ đề này có 34 trả lời

#21 nxt1989

nxt1989

    Binh nhất

  • Thành viên
  • 33 Bài viết

Đã gửi 10-05-2009 - 18:10

;) cái này anh khuyên thế thôi .Sau này em sẽ tự nhận thức đuợc .Cái này cứ phải từ từ ,trải qua rồi mới hiểu . :)

#22 huyetdao_tama

huyetdao_tama

    Binh nhất

  • Thành viên
  • 47 Bài viết
  • Giới tính:Nam

Đã gửi 12-08-2009 - 18:04

:oto: Khủng khiếp wá. Thế này mà cũng dám làm. Em xin bái phục .

#23 vuthanhtu_hd

vuthanhtu_hd

    Tiến sĩ Diễn Đàn Toán

  • Hiệp sỹ
  • 1189 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Dương
  • Sở thích:ngủ ^^

Đã gửi 12-08-2009 - 19:08

Trời ơi!!!Quả là con người kiên trì.Nản quá :oto:

Nếu một ngày bạn cảm thấy buồn và muốn khóc,hãy gọi cho tôi nhé.
Tôi không hứa sẽ làm cho bạn cười nhưng có thể tôi sẽ khóc cùng với bạn.
Nếu một ngày bạn muốn chạy chốn tất cả hãy gọi cho tôi.
Tôi không yêu cầu bạn dừng lại nhưng tôi sẽ chạy cùng với bạn.
Và nếu một ngày nào đó bạn không muốn nghe ai nói nữa,hãy gọi cho tôi nhé.
Tôi sẽ đến bên bạn và chỉ im lặng.
Nhưng nếu một ngày bạn gọi đến tôi mà không thấy tôi hồi âm...
Hãy chạy thật nhanh đến bên tôi vì lúc đó tôi mới là người cần bạn.

______________________
__________________________________
Vu Thanh TuUniversity of Engineering & Technology


#24 Toanlc_gift

Toanlc_gift

    Sĩ quan

  • Hiệp sỹ
  • 315 Bài viết
  • Giới tính:Nam
  • Đến từ:FU
  • Sở thích:Math

Đã gửi 12-08-2009 - 19:22

hix,cái đó biểu diễn trên maple cũng phải mấy mặt giấy đấy nhỉ :oto:
nó cồng kềnh đến mức không đủ bình tính để đặt dấu sigma vào <_<
nhưng nếu expand như thế thì làm sao mà chứng minh $f(T) \le 0$ được :D

Bài viết đã được chỉnh sửa nội dung bởi Toanlc_gift: 12-08-2009 - 19:26

=.=


#25 Toanlc_gift

Toanlc_gift

    Sĩ quan

  • Hiệp sỹ
  • 315 Bài viết
  • Giới tính:Nam
  • Đến từ:FU
  • Sở thích:Math

Đã gửi 12-08-2009 - 20:11

đây là $f((a+b+c)^3)$ <_<
post vào 6 cái ảnh vậy:P
Hình đã gửi
Hình đã gửi
Hình đã gửi
Hình đã gửi
Hình đã gửi
Hình đã gửi
hix,đừng chém em :oto:

Bài viết đã được chỉnh sửa nội dung bởi Toanlc_gift: 12-08-2009 - 20:15

=.=


#26 mai quoc thang

mai quoc thang

    Thắng yêu Dung

  • Thành viên
  • 251 Bài viết
  • Giới tính:Nam
  • Đến từ:TP HCM
  • Sở thích:......

Đã gửi 12-08-2009 - 22:05

Cho $a;b;c \ge 0$
chứng minh rằng:
$a\sqrt{16a^4+65b^3c} +b\sqrt{16b^4+65c^3a} +c\sqrt{16c^4+65a^3b} \ge (a+b+c)^3$


Tớ có một lời giải phải nói là rất xấu theo phong cách của ngài Ji chen .

Lời giải :

Đặt :

$ m=a\sqrt{16a^4+65b^3c} \ ; \ n= b\sqrt{16b^4+65c^3a} \ ; \ t=c\sqrt{16c^4+65a^3b}$

Xét hàm :

$ F(T)=(T+m+n+t)(T+m+n-t)(T+m-n-t)(T-m-n-t)(T-m-n+t)(T-m+n+t)(T+m-n+t)(T-m+n-t) $

Ta có :

$ F \left( T \right) ={T}^{8}-64\,{b}^{6}{T}^{6}-64\,{a}^{6}{T}^{6}-260
\,{c}^{2}{a}^{3}b{T}^{6}-260\,{b}^{2}{c}^{3}a{T}^{6}-64\,{c}^{6}{T}^{6
}-260\,{a}^{2}{b}^{3}c{T}^{6}
$

$+25350\,{a}^{4}{b}^{6}{c}^{2}{T}^{4}+1024
\,{c}^{6}{b}^{6}{T}^{4}+1024\,{c}^{6}{a}^{6}{T}^{4}+4160\,{b}^{2}{c}^{
3}{a}^{7}{T}^{4}+25350\,{b}^{4}{c}^{6}{a}^{2}{T}^{4}+16900\,{b}^{5}{c}
^{4}{a}^{3}{T}^{4}+25350\,{c}^{4}{a}^{6}{b}^{2}{T}^{4} $

$ +4160\,{a}^{2}{b
}^{3}{c}^{7}{T}^{4}+4160\,{c}^{2}{a}^{9}b{T}^{4}+1024\,{a}^{6}{b}^{6}{
T}^{4}+4160\,{b}^{2}{c}^{9}a{T}^{4}+1536\,{a}^{12}{T}^{4}+1536\,{c}^{
12}{T}^{4}+1536\,{b}^{12}{T}^{4}+12480\,{c}^{8}{a}^{3}b{T}^{4}+4160\,{
c}^{2}{a}^{3}{b}^{7}{T}^{4} $

$ +12480\,{a}^{8}{b}^{3}c{T}^{4}+12480\,{b}^{
8}{c}^{3}a{T}^{4}+4160\,{a}^{2}{b}^{9}c{T}^{4}+16900\,{a}^{5}{b}^{4}{c
}^{3}{T}^{4}+16900\,{b}^{3}{c}^{5}{a}^{4}{T}^{4}-2704000\,{c}^{3}{a}^{
5}{b}^{10}{T}^{2}+133120\,{b}^{8}{c}^{9}a{T}^{2}+540800\,{b}^{9}{c}^{5
}{a}^{4}{T}^{2} $

$+1098500\,{b}^{7}{c}^{7}{a}^{4}{T}^{2}-811200\,{c}^{10}
{a}^{6}{b}^{2}{T}^{2} -1098500\,{c}^{6}{a}^{9}{b}^{3}{T}^{2}-665600\,{c
}^{2}{a}^{9}{b}^{7}{T}^{2}-2704000\,{c}^{5}{a}^{10}{b}^{3}{T}^{2}+
270400\,{b}^{4}{c}^{12}{a}^{2}{T}^{2} $

$ -199680\,{b}^{14}{c}^{3}a{T}^{2}+
133120\,{a}^{8}{b}^{3}{c}^{7}{T}^{2}-11148840\,{c}^{6}{a}^{6}{b}^{6}{T
}^{2}$

$ -16384\,{a}^{18}{T}^{2}-16384\,{c}^{18}{T}^{2}+540800\,{b}^{11}{c
}^{4}{a}^{3}{T}^{2}+1098500\,{c}^{7}{a}^{7}{b}^{4}{T}^{2}$

$ +270400a^6b^8c^4T^2 $

$+540800\,{a}^{4}{b}^{3}{c}^{11}{T}^{2}+1098500
\,{b}^{5}{c}^{8}{a}^{5}{T}^{2}+133120\,{b}^{7}{c}^{8}{a}^{3}{T}^{2}+
540800\,{a}^{11}{b}^{4}{c}^{3}{T}^{2}+270400\,{a}^{4}{b}^{6}{c}^{8}{T}
^{2}-199680\,{c}^{14}{a}^{3}b{T}^{2}$

$ -2704000\,{c}^{10}{a}^{3}{b}^{5}{T
}^{2}+133120\,{c}^{8}{a}^{9}b{T}^{2}+270400\,{c}^{4}{a}^{12}{b}^{2}{T}
^{2}+540800\,{c}^{9}{a}^{5}{b}^{4}{T}^{2}+1098500\,{c}^{5}{a}^{8}{b}^{
5}{T}^{2}+16384\,{c}^{12}{a}^{6}{T}^{2}+66560\,{a}^{2}{b}^{15}c{T}^{2}
-199680\,{a}^{14}{b}^{3}c{T}^{2}$

$ -665600\,{c}^{9}{a}^{7}{b}^{2}{T}^{2}+
66560\,{a}^{15}{c}^{2}b{T}^{2}-811200\,{b}^{10}{c}^{6}{a}^{2}{T}^{2}+
16384\,{c}^{12}{b}^{6}{T}^{2}+540800\,{a}^{9}{b}^{5}{c}^{4}{T}^{2}+
1098500\,{a}^{7}{b}^{7}{c}^{4}{T}^{2}$

$ +16384\,{a}^{6}{b}^{12}{T}^{2}-
1098500\,{b}^{6}{c}^{9}{a}^{3}{T}^{2}+270400\,{b}^{4}{c}^{6}{a}^{8}{T}
^{2}+16384\,{b}^{12}{c}^{6}{T}^{2}+16384\,{a}^{12}{b}^{6}{T}^{2}+
1098500\,{a}^{5}{b}^{8}{c}^{5}{T}^{2}-16384\,{b}^{18}{T}^{2}$

$ +66560\,{c}^{15}{b}^{2}a{T}^{2}-665600\,{c}^{7}{a}^{2}{b}^{9}{T}^{2}+66560\,{b}^
{13}{c}^{2}{a}^{3}{T}^{2}+133120\,{b}^{8}{c}^{3}{a}^{7}{T}^{2}+16384\,
{a}^{12}{c}^{6}{T}^{2}-811200\,{a}^{10}{b}^{6}{c}^{2}{T}^{2}-1098500\,
{a}^{6}{b}^{9}{c}^{3}{T}^{2} $

$ +66560\,{a}^{13}{b}^{2}{c}^{3}{T}^{2}+
66560\,{c}^{13}{a}^{2}{b}^{3}{T}^{2}+270400\,{a}^{4}{b}^{12}{c}^{2}{T}
^{2}+133120\,{a}^{8}{b}^{9}c{T}^{2}+1064960\,{b}^{20}{c}^{3}a+1064960
\,{a}^{20}{b}^{3}c+35414144\,{c}^{6}{a}^{12}{b}^{6} $

$ -71402500\,{b}^{9}{
c}^{10}{a}^{5}+35414144\,{a}^{6}{b}^{6}{c}^{12}+17576000\,{c}^{7}{a}^{
13}{b}^{4}-12979200\,{c}^{10}{a}^{6}{b}^{8}+1064960\,{c}^{20}{a}^{3}b-
12979200\,{a}^{17}{b}^{4}{c}^{3} $

$ +25958400\,{b}^{9}{c}^{11}{a}^{4}+
6489600\,{a}^{16}{b}^{6}{c}^{2}+107103750\,{b}^{10}{c}^{8}{a}^{6}+
73532420\,{c}^{8}{a}^{9}{b}^{7}+8652800\,{c}^{5}{a}^{10}{b}^{9}+
1064960\,{a}^{13}{b}^{2}{c}^{9}$

$ -12979200\,{a}^{15}{b}^{5}{c}^{4}-
12979200\,{c}^{15}{a}^{5}{b}^{4}-12979200\,{b}^{15}{c}^{5}{a}^{4}+
25958400\,{c}^{9}{a}^{11}{b}^{4}+6489600\,{c}^{14}{a}^{4}{b}^{6}+
25958400\,{a}^{9}{b}^{11}{c}^{4} $

$ -12979200\,{a}^{10}{b}^{12}{c}^{2}-
12979200\,{a}^{3}{b}^{17}{c}^{4}+17576000\,{c}^{8}{a}^{11}{b}^{5}+
1064960\,{c}^{15}{b}^{2}{a}^{7}-12979200\,{c}^{17}{b}^{3}{a}^{4}-
71402500\,{a}^{7}{b}^{11}{c}^{6} $

$ -17576000\,{b}^{9}{c}^{9}{a}^{6}+
17576000\,{b}^{7}{c}^{13}{a}^{4}+52728000\,{a}^{7}{b}^{7}{c}^{10}+
107103750\,{a}^{10}{b}^{8}{c}^{6}+52728000\,{a}^{5}{b}^{14}{c}^{5}-
12979200\,{c}^{8}{a}^{10}{b}^{6} $

$ -17576000\,{a}^{6}{b}^{15}{c}^{3}+
6489600\,{a}^{4}{b}^{18}{c}^{2}+17576000\,{a}^{12}{b}^{9}{c}^{3}-
17576000\,{b}^{6}{c}^{9}{a}^{9}-52728000\,{a}^{13}{b}^{7}{c}^{4}+
8652800\,{b}^{5}{c}^{10}{a}^{9} $

$ +4326400\,{a}^{3}{b}^{5}{c}^{16}+393216
\,{a}^{12}{c}^{12}-262144\,{c}^{18}{a}^{6}+393216\,{b}^{12}{c}^{12}-
262144\,{a}^{18}{c}^{6}-262144\,{b}^{18}{c}^{6}+35414144\,{a}^{6}{b}^{
12}{c}^{6}+393216\,{a}^{12}{b}^{12} $

$+17576000\,{a}^{7}{b}^{13}{c}^{4}-
262144\,{a}^{18}{b}^{6}+4326400\,{a}^{5}{b}^{16}{c}^{3}-71402500\,{c}^
{9}{a}^{10}{b}^{5}+4326400\,{c}^{4}{a}^{12}{b}^{8} $

$ +1064960\,{c}^{2}{a}
^{15}{b}^{7}+8652800\,{c}^{3}{a}^{11}{b}^{10}+1064960\,{c}^{2}{a}^{9}{
b}^{13}+6489600\,{c}^{16}{a}^{6}{b}^{2}+17576000\,{c}^{12}{a}^{9}{b}^{
3}+17850625\,{c}^{8}{a}^{12}{b}^{4}-262144\,{c}^{18}{b}^{6} $

$ -71402500\,
{c}^{7}{a}^{11}{b}^{6}-262144\,{a}^{6}{b}^{18}-52728000\,{c}^{11}{a}^{
8}{b}^{5}-17576000\,{c}^{6}{a}^{9}{b}^{9}-52728000\,{a}^{11}{b}^{8}{c}
^{5}+3194880\,{a}^{15}{c}^{8}b+17850625\,{a}^{8}{b}^{12}{c}^{4}-
3194880\,{c}^{14}{a}^{9}b $

$ +3194880\,{c}^{13}{a}^{8}{b}^{3}-71402500\,{b
}^{10}{c}^{5}{a}^{9}+3194880\,{b}^{13}{c}^{8}{a}^{3}-3194880\,{a}^{14}
{c}^{7}{b}^{3}-17576000\,{c}^{6}{a}^{15}{b}^{3}-3194880\,{b}^{14}{c}^{
9}a-12979200\,{c}^{10}{a}^{12}{b}^{2} $

$ +3194880\,{c}^{15}{b}^{8}a+
8652800\,{c}^{11}{a}^{10}{b}^{3}-3194880\,{c}^{14}{b}^{7}{a}^{3}+
3194880\,{a}^{8}{b}^{15}c-3194880\,{a}^{7}{b}^{14}{c}^{3}-52728000\,{c
}^{13}{a}^{7}{b}^{4}-3194880\,{a}^{14}{b}^{9}c $

$ +3194880\,{a}^{13}{b}^{8
}{c}^{3}-1064960\,{a}^{19}{b}^{2}{c}^{3}-1064960\,{a}^{21}{c}^{2}b-
1064960\,{b}^{21}{a}^{2}c-1064960\,{b}^{19}{c}^{2}{a}^{3}-1064960\,{c}
^{19}{a}^{2}{b}^{3}-1064960\,{c}^{21}{b}^{2}a+52728000\,{c}^{7}{a}^{7}
{b}^{10}+107103750\,{c}^{10}{a}^{8}{b}^{6}$

$ +6489600\,{c}^{4}{a}^{18}{b}
^{2}+52728000\,{c}^{5}{a}^{14}{b}^{5}+17576000\,{c}^{5}{a}^{8}{b}^{11}
+6489600\,{c}^{4}{a}^{6}{b}^{14}+73532420\,{b}^{8}{c}^{9}{a}^{7}-
52728000\,{b}^{11}{c}^{8}{a}^{5}-71402500\,{b}^{7}{c}^{11}{a}^{6}+
52728000\,{b}^{5}{c}^{14}{a}^{5}$

$-12979200\,{b}^{10}{c}^{6}{a}^{8}-
52728000\,{b}^{13}{c}^{7}{a}^{4}+6489600\,{b}^{16}{c}^{6}{a}^{2}+
17576000\,{b}^{12}{c}^{9}{a}^{3}-12979200\,{b}^{10}{c}^{12}{a}^{2}+
6489600\,{b}^{4}{c}^{6}{a}^{14}+52728000\,{b}^{7}{c}^{7}{a}^{10}+
4326400\,{c}^{5}{a}^{16}{b}^{3}$

$+4326400\,{b}^{4}{c}^{12}{a}^{8}+65536
\,{a}^{24}+65536\,{b}^{24}+65536\,{c}^{24}+17850625\,{b}^{8}{c}^{12}{a
}^{4}-17576000\,{b}^{6}{c}^{15}{a}^{3}$

$ +6489600\,{b}^{4}{c}^{18}{a}^{2}
+73532420\,{b}^{9}{c}^{7}{a}^{8}+4326400\,{b}^{12}{c}^{8}{a}^{4}+
1064960\,{a}^{2}{b}^{15}{c}^{7}+8652800\,{a}^{3}{b}^{11}{c}^{10}+
1064960\,{a}^{2}{b}^{9}{c}^{13}+8652800\,{a}^{5}{b}^{10}{c}^{9}+
17576000\,{b}^{8}{c}^{11}{a}^{5} $

Ta chứng minh : $ F((a+b+c)^3) \leq 0 $ .

Không mất tính tổng quát giả sử : $ c=min\{a;b;c\} $

Đặt : $ a=x+c \ ; \ b=y+c \ ; \ x,y \geq 0 $

Ta có :

$ F((a+b+c)^3)=-40779396864\,{y}^{2}{c}^{22}-40779396864\,{x}^{2}{c}^{22}+40779396864
\,xy{c}^{22}-4542474816\,x{y}^{2}{c}^{21}-345212036352\,{y}^{3}{c}^{21
}$

$+143031852864\,{x}^{2}y{c}^{21}-345212036352\,{x}^{3}{c}^{21}-
1389000702368\,x{y}^{3}{c}^{20}$

$-1376117913104\,{x}^{4}{c}^{20}+
950511111888\,{x}^{2}{y}^{2}{c}^{20}-1376117913104\,{y}^{4}{c}^{20}-
355980408608\,{x}^{3}y{c}^{20} $

$+3268231889920\,{x}^{3}{y}^{2}{c}^{19}-
374884969280\,{x}^{2}{y}^{3}{c}^{19}-6931813722240\,x{y}^{4}{c}^{19}-
3400454771360\,{x}^{5}{c}^{19}$

$-3400454771360\,{y}^{5}{c}^{19}-
3588270683040\,{x}^{4}y{c}^{19}+8694195294640\,{x}^{3}{y}^{3}{c}^{18}-
5761729245152\,{y}^{6}{c}^{18}$

$-11706313884304\,{x}^{5}y{c}^{18}+
3141160960560\,{x}^{4}{y}^{2}{c}^{18}-5761729245152\,{x}^{6}{c}^{18}-
12058404371040\,{x}^{2}{y}^{4}{c}^{18}$

$-18331951300624\,x{y}^{5}{c}^{18
}-7090226946264\,{x}^{5}{y}^{2}{c}^{17}-31910915937800\,{y}^{6}x{c}^{
17}+23905249549480\,{x}^{4}{y}^{3}{c}^{17}$

$+277170784280\,{x}^{3}{y}^{4
}{c}^{17}-6968375977248\,{y}^{7}{c}^{17}-6968375977248\,{x}^{7}{c}^{17
}-40052951782344\,{x}^{2}{y}^{5}{c}^{17}$

$-23021578634200\,{x}^{6}y{c}^{
17}-39365392036908\,{y}^{7}x{c}^{16}-6001362257655\,{x}^{8}{c}^{16}-
6001362257655\,{y}^{8}{c}^{16}$

$-28865583152230\,{x}^{6}{y}^{2}{c}^{16}-
75447433406390\,{y}^{6}{x}^{2}{c}^{16}+28216218821296\,{x}^{5}{y}^{3}{
c}^{16}+36554051039115\,{x}^{4}{y}^{4}{c}^{16}$

$-31086101515068\,{x}^{7}
y{c}^{16}-37290606415024\,{x}^{3}{y}^{5}{c}^{16}-30153209881820\,{x}^{
8}y{c}^{15}+10805081693192\,{x}^{4}{y}^{5}{c}^{15}$

$-96584908345028\,{y}
^{7}{x}^{2}{c}^{15}-35175435038080\,{y}^{8}x{c}^{15}+7807646747492\,{x
}^{6}{y}^{3}{c}^{15}-3410350133620\,{y}^{9}{c}^{15}-3410350133620\,{x}
^{9}{c}^{15}$

$-50439484795348\,{x}^{7}{y}^{2}{c}^{15}-92817396270488\,{y
}^{6}{x}^{3}{c}^{15}+69630079888012\,{x}^{5}{y}^{4}{c}^{15}-
130810448874020\,{y}^{7}{x}^{3}{c}^{14}-56922248312170\,{x}^{8}{y}^{2}
{c}^{14}$

$+65909158471920\,{x}^{6}{y}^{4}{c}^{14}+71194715124304\,{x}^{5
}{y}^{5}{c}^{14}-794703777734\,{y}^{10}{c}^{14}-794703777734\,{x}^{10}
{c}^{14}-89088373623100\,{y}^{8}{x}^{2}{c}^{14}$

$-26123753934440\,{x}^{7
}{y}^{3}{c}^{14}-48174554126260\,{y}^{6}{x}^{4}{c}^{14}-22215280820260
\,{y}^{9}x{c}^{14}-20992933406700\,{x}^{9}y{c}^{14}-98489910922060\,{y
}^{7}{x}^{4}{c}^{13} $

$-9739722607384\,{x}^{10}y{c}^{13}+655247249392\,{y
}^{11}{c}^{13}-48254955142000\,{x}^{8}{y}^{3}{c}^{13}-126366073881940
\,{y}^{8}{x}^{3}{c}^{13}$

$+655247249392\,{x}^{11}{c}^{13}+26125041317760
\,{y}^{6}{x}^{5}{c}^{13}-45531851756140\,{x}^{9}{y}^{2}{c}^{13}-
59817646566960\,{y}^{9}{x}^{2}{c}^{13}+91280713124440\,{x}^{6}{y}^{5}{
c}^{13}-8593850024204\,{y}^{10}x{c}^{13}$

$+29047136848280\,{x}^{7}{y}^{4
}{c}^{13}-26458829532820\,{y}^{7}{x}^{5}{c}^{12}-47020363510480\,{x}^{
9}{y}^{3}{c}^{12}+63968230507640\,{x}^{7}{y}^{5}{c}^{12}$

$-26286643079152\,{x}^{10}{y}^{2}{c}^{12}-240418349520\,{y}^{11}x{c}^{12
}-106833276607195\,{y}^{8}{x}^{4}{c}^{12}-28011437835512\,{y}^{10}{x}^
{2}{c}^{12}-7840548636500\,{x}^{8}{y}^{4}{c}^{12}$

$-1908230448980\,{x}^{11}y{c}^{12}+888905253383\,{y}^{12}{c}^{12}+67054530571438\,{x}^{6}{y}
^{6}{c}^{12}+888905253383\,{x}^{12}{c}^{12}-88467848272280\,{y}^{9}{x}
^{3}{c}^{12}-7334931596240\,{y}^{11}{x}^{2}{c}^{11}$

$-10411323754040\,{x}^{11}{y}^{2}{c}^{11}+2361894748848\,{y}^{12}x{c}^{11}+1206814675688\,
{x}^{12}y{c}^{11}+58083836666004\,{x}^{7}{y}^{6}{c}^{11}-
49827013230460\,{y}^{8}{x}^{5}{c}^{11}-45158700786088\,{y}^{10}{x}^{3}
{c}^{11}$

$+23840307740944\,{x}^{6}{y}^{7}{c}^{11}+546011816620\,{x}^{13}
{c}^{11}-31215013301608\,{x}^{10}{y}^{3}{c}^{11}+24276793517940\,{x}^{
8}{y}^{5}{c}^{11}-22787922723920\,{x}^{9}{y}^{4}{c}^{11}+546011816620
\,{y}^{13}{c}^{11}$

$ -78735217905360\,{y}^{9}{x}^{4}{c}^{11}-
15987366180552\,{y}^{11}{x}^{3}{c}^{10}+1385658257020\,{x}^{13}y{c}^{
10}+887362800558\,{y}^{12}{x}^{2}{c}^{10}-42008727933836\,{y}^{10}{x}^
{4}{c}^{10}+29386455934934\,{x}^{8}{y}^{6}{c}^{10}$

$+425141134060\,{x}^{9}{y}^{5}{c}^{10}+194107227610\,{x}^{14}{c}^{10}-4767920597576\,{x}^{6
}{y}^{8}{c}^{10}+31649604172076\,{x}^{7}{y}^{7}{c}^{10}-42267014915860
\,{y}^{9}{x}^{5}{c}^{10}+1902970539260\,{y}^{13}x{c}^{10}$

$ -19261789310856\,{x}^{10}{y}^{4}{c}^{10}+194107227610\,{y}^{14}{c}^{10}
-2103047767262\,{x}^{12}{y}^{2}{c}^{10}-14928358674112\,{x}^{11}{y}^{3
}{c}^{10}-23705381781376\,{y}^{10}{x}^{5}{c}^{9}-5046511585140\,{x}^{
12}{y}^{3}{c}^{9}$

$+23830716048\,{y}^{15}{c}^{9}-11719135055000\,{x}^{6}
{y}^{9}{c}^{9}-16379088762140\,{y}^{11}{x}^{4}{c}^{9}+23830716048\,{x}
^{15}{c}^{9}+9852566232560\,{x}^{7}{y}^{8}{c}^{9}+864660823600\,{y}^{
14}x{c}^{9}$

$+718950711780\,{x}^{14}y{c}^{9}-3051453687580\,{y}^{12}{x}^
{3}{c}^{9}+18609374048160\,{x}^{8}{y}^{7}{c}^{9}+2055748110160\,{y}^{
13}{x}^{2}{c}^{9}+8571888423180\,{x}^{9}{y}^{6}{c}^{9}-5710720353776\,
{x}^{10}{y}^{5}{c}^{9}$

$+489157481700\,{x}^{13}{y}^{2}{c}^{9}-
10355975584500\,{x}^{11}{y}^{4}{c}^{9}+407823125020\,{y}^{13}{x}^{3}{c
}^{8}-7901167586150\,{x}^{6}{y}^{10}{c}^{8}+626759521940\,{x}^{14}{y}^
{2}{c}^{8}$

$+485209265040\,{x}^{7}{y}^{9}{c}^{8}-4481753621960\,{y}^{12}
{x}^{4}{c}^{8}-9533263186188\,{y}^{11}{x}^{5}{c}^{8}-3938686609225\,{x
}^{12}{y}^{4}{c}^{8}$

$ +539560240810\,{x}^{10}{y}^{6}{c}^{8}+238786738576
\,{y}^{15}x{c}^{8}-1038341117620\,{x}^{13}{y}^{3}{c}^{8}-15507566105\,
{x}^{16}{c}^{8} $

$+7528857174675\,{x}^{8}{y}^{8}{c}^{8}-4050740929028\,{x
}^{11}{y}^{5}{c}^{8}+1170135212330\,{y}^{14}{x}^{2}{c}^{8}-15507566105
\,{y}^{16}{c}^{8}$

$+223810763536\,{x}^{15}y{c}^{8}+6687472202300\,{x}^{9
}{y}^{7}{c}^{8}+568551227680\,{y}^{14}{x}^{3}{c}^{7}-715847314400\,{y}
^{13}{x}^{4}{c}^{7}-3318519957316\,{x}^{6}{y}^{11}{c}^{7}-11281109820
\,{x}^{14}{y}^{3}{c}^{7}$

$-10596866760\,{y}^{17}{c}^{7}+24202736900\,{y}
^{16}x{c}^{7}+411265914372\,{y}^{15}{x}^{2}{c}^{7}-1061526266980\,{x}^
{13}{y}^{4}{c}^{7}$

$+289916155972\,{x}^{15}{y}^{2}{c}^{7}-1674504463572
\,{x}^{12}{y}^{5}{c}^{7}-10596866760\,{x}^{17}{c}^{7}+1416634815020\,{
x}^{10}{y}^{7}{c}^{7}$

$+1899336214100\,{x}^{8}{y}^{9}{c}^{7}-
783779117776\,{x}^{11}{y}^{6}{c}^{7}-1169218051980\,{x}^{7}{y}^{10}{c}
^{7}+2984800218400\,{x}^{9}{y}^{8}{c}^{7}$

$-2795893032392\,{y}^{12}{x}^{
5}{c}^{7}+31883469180\,{x}^{16}y{c}^{7}-432218020392\,{x}^{12}{y}^{6}{
c}^{6}+237508866744\,{y}^{15}{x}^{3}{c}^{6}$

$-972801642412\,{x}^{6}{y}^{
12}{c}^{6}-184892597980\,{x}^{14}{y}^{4}{c}^{6}+80831600804\,{x}^{15}{
y}^{3}{c}^{6}+83786222520\,{x}^{16}{y}^{2}{c}^{6}$

$-472097972380\,{x}^{
13}{y}^{5}{c}^{6}-3107203010\,{x}^{18}{c}^{6}-11418784440\,{y}^{17}x{c
}^{6}+737097909890\,{x}^{10}{y}^{8}{c}^{6}+14803422700\,{y}^{14}{x}^{4
}{c}^{6}$

$-655793824136\,{x}^{7}{y}^{11}{c}^{6}+211091427980\,{x}^{8}{y}
^{10}{c}^{6}+869440183280\,{x}^{9}{y}^{9}{c}^{6}-583468069920\,{y}^{13
}{x}^{5}{c}^{6}$

$-6829628700\,{x}^{17}y{c}^{6}+78324754304\,{x}^{11}{y}^
{7}{c}^{6}+95911483330\,{y}^{16}{x}^{2}{c}^{6}-3107203010\,{y}^{18}{c}
^{6}-91395879700\,{x}^{14}{y}^{5}{c}^{5}$

$+162589266640\,{x}^{9}{y}^{10}
{c}^{5}-55823773252\,{x}^{12}{y}^{7}{c}^{5}-78303104680\,{y}^{14}{x}^{
5}{c}^{5}-344594340\,{x}^{19}{c}^{5}$

$-5406008500\,{x}^{18}y{c}^{5}+
32813191240\,{x}^{16}{y}^{3}{c}^{5}+45210904768\,{y}^{15}{x}^{4}{c}^{5
}-127077375040\,{x}^{13}{y}^{6}{c}^{5}$

$-38780669116\,{x}^{8}{y}^{11}{c}
^{5}+104822931804\,{x}^{11}{y}^{8}{c}^{5}-344594340\,{y}^{19}{c}^{5}+
61838306320\,{y}^{16}{x}^{3}{c}^{5}$

$-12045226892\,{x}^{15}{y}^{4}{c}^{5
}-6689917100\,{y}^{18}x{c}^{5}-200044380692\,{x}^{7}{y}^{12}{c}^{5}+
15598084800\,{x}^{17}{y}^{2}{c}^{5}$

$+223839495160\,{x}^{10}{y}^{9}{c}^{
5}-203819138060\,{x}^{6}{y}^{13}{c}^{5}+13385794980\,{y}^{17}{x}^{2}{c
}^{5}+1560865030\,{x}^{18}{y}^{2}{c}^{4}$

$-24105888010\,{x}^{14}{y}^{6}{
c}^{4}-29953163730\,{x}^{6}{y}^{14}{c}^{4}-3999521728\,{y}^{15}{x}^{5}
{c}^{4}$

$+43588960498\,{x}^{10}{y}^{10}{c}^{4}+34937613760\,{x}^{11}{y}^
{9}{c}^{4}-21628269865\,{x}^{8}{y}^{12}{c}^{4}+13781514260\,{y}^{16}{x
}^{4}{c}^{4}$

$+88274106\,{y}^{20}{c}^{4}+3227891270\,{x}^{12}{y}^{8}{c}^
{4}-1853232300\,{y}^{19}x{c}^{4}-20972645460\,{x}^{13}{y}^{7}{c}^{4}+
10844622900\,{y}^{17}{x}^{3}{c}^{4}$

$-40018711720\,{x}^{7}{y}^{13}{c}^{4
}+88274106\,{x}^{20}{c}^{4}-11076565468\,{x}^{15}{y}^{5}{c}^{4}+
3365694300\,{x}^{16}{y}^{4}{c}^{4}$

$-1635221520\,{x}^{19}y{c}^{4}+
16427755380\,{x}^{9}{y}^{11}{c}^{4}+7370610540\,{x}^{17}{y}^{3}{c}^{4}
+422195940\,{y}^{18}{x}^{2}{c}^{4}$

$-2944137368\,{x}^{15}{y}^{6}{c}^{3}-
23044320\,{x}^{19}{y}^{2}{c}^{3}+6546766992\,{x}^{11}{y}^{10}{c}^{3}+
10186180\,{x}^{9}{y}^{12}{c}^{3}$

$-4490978440\,{x}^{8}{y}^{13}{c}^{3}-
1808057940\,{x}^{13}{y}^{8}{c}^{3}-241562880\,{y}^{19}{x}^{2}{c}^{3}+
2813069120\,{x}^{12}{y}^{9}{c}^{3}$

$+1026647520\,{x}^{18}{y}^{3}{c}^{3}+
5262736452\,{x}^{10}{y}^{11}{c}^{3}-5377224000\,{x}^{7}{y}^{14}{c}^{3}
-2882174948\,{x}^{6}{y}^{15}{c}^{3}$

$+1248027640\,{y}^{18}{x}^{3}{c}^{3}
-323853948\,{y}^{20}x{c}^{3}-515361720\,{x}^{16}{y}^{5}{c}^{3}+
2351959980\,{y}^{17}{x}^{4}{c}^{3}$

$+1145456760\,{x}^{17}{y}^{4}{c}^{3}+
737468560\,{y}^{16}{x}^{5}{c}^{3}-302103648\,{x}^{20}y{c}^{3}-
3810642880\,{x}^{14}{y}^{7}{c}^{3}$

$+46621620\,{x}^{21}{c}^{3}+46621620
\,{y}^{21}{c}^{3}-362756220\,{x}^{14}{y}^{8}{c}^{2}+179266140\,{y}^{17
}{x}^{5}{c}^{2}-206429766\,{x}^{16}{y}^{6}{c}^{2}+713792616\,{x}^{11}{
y}^{11}{c}^{2}$

$+84094740\,{y}^{19}{x}^{3}{c}^{2}+3077760\,{x}^{13}{y}^{
9}{c}^{2}-36504720\,{y}^{21}x{c}^{2}-51787656\,{y}^{20}{x}^{2}{c}^{2}+
82316340\,{x}^{19}{y}^{3}{c}^{2}$

$-29604456\,{x}^{20}{y}^{2}{c}^{2}+
528846458\,{x}^{12}{y}^{10}{c}^{2}-221341760\,{x}^{9}{y}^{13}{c}^{2}+
347596168\,{x}^{10}{y}^{12}{c}^{2}$

$-151217856\,{x}^{6}{y}^{16}{c}^{2}-
397558952\,{x}^{15}{y}^{7}{c}^{2}+9630900\,{y}^{22}{c}^{2}+66187200\,{
x}^{17}{y}^{5}{c}^{2}-526026990\,{x}^{8}{y}^{14}{c}^{2}+9630900\,{x}^{
22}{c}^{2}$

$-464025352\,{x}^{7}{y}^{15}{c}^{2}-35510220\,{x}^{21}y{c}^{2
}+243149230\,{y}^{18}{x}^{4}{c}^{2}+162763080\,{x}^{18}{y}^{4}{c}^{2}+
2240208\,{y}^{20}{x}^{3}c$

$+13943700\,{y}^{19}{x}^{4}c+45272568\,{x}^{12
}{y}^{11}c+16392840\,{y}^{18}{x}^{5}c-17997600\,{x}^{14}{y}^{9}c+
11657520\,{x}^{19}{y}^{4}c$

$-29944080\,{x}^{15}{y}^{8}c-5339880\,{x}^{17
}{y}^{6}c-4620060\,{y}^{21}{x}^{2}c+41882688\,{x}^{11}{y}^{12}c-
33978240\,{x}^{8}{y}^{15}c $

$+16211280\,{x}^{13}{y}^{10}c-22573176\,{x}^{
7}{y}^{16}c+1053000\,{x}^{23}c+1053000\,{y}^{23}c-21652776\,{x}^{16}{y
}^{7}c-25476240\,{x}^{9}{y}^{14}c $

$-2478600\,{y}^{22}xc+2673108\,{x}^{20
}{y}^{3}c+7255320\,{x}^{10}{y}^{13}c-1617720\,{x}^{6}{y}^{17}c+
12147300\,{x}^{18}{y}^{5}c $

$-2478600\,{x}^{22}yc-3625560\,{x}^{21}{y}^{2
}c-81000\,{y}^{23}x+329346\,{y}^{20}{x}^{4}-39960\,{y}^{21}{x}^{3}-
965520\,{x}^{15}{y}^{9}$

$-1001169\,{x}^{16}{y}^{8}+838800\,{x}^{11}{y}^{
13}-181080\,{x}^{10}{y}^{14}-364680\,{x}^{7}{y}^{17}+838800\,{x}^{13}{
y}^{11}$

$+329346\,{x}^{20}{y}^{4}+612360\,{y}^{19}{x}^{5}+50625\,{x}^{24
}-181080\,{x}^{14}{y}^{10}-153900\,{y}^{22}{x}^{2}+104580\,{y}^{18}{x}
^{6}$

$+612360\,{x}^{19}{y}^{5}-81000\,{x}^{23}y-39960\,{x}^{21}{y}^{3}-
364680\,{x}^{17}{y}^{7} $

$+104580\,{x}^{18}{y}^{6}+1703196\,{x}^{12}{y}^{12}+50625\,{y}^{24}-1001169\,{x}^{8}{y}^{16}-153900\,{x}^{22}{y}^{2}-
965520\,{x}^{9}{y}^{15} \leq 0

$

Từ đó có $ (a+b+c)^3 $ bé hơn hoặc bằng nghiệm lớn nhất của phương trình $ F(T)=0 $ là $ m+n+t $ .

Hay là :

$ a\sqrt{16a^4+65b^3c} +b\sqrt{16b^4+65c^3a} +c\sqrt{16c^4+65a^3b} \ge (a+b+c)^3 $

Đó chính là đpcm . :oto:

P/S : dù là maple nhưng phải nói là chơi trò này mất sức quá <_<

#27 L_Euler

L_Euler

    Leonhard Euler

  • Hiệp sỹ
  • 938 Bài viết
  • Giới tính:Nam
  • Đến từ:France

Đã gửi 12-08-2009 - 22:13

Hic cái gì thế này :oto:

#28 vuthanhtu_hd

vuthanhtu_hd

    Tiến sĩ Diễn Đàn Toán

  • Hiệp sỹ
  • 1189 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Dương
  • Sở thích:ngủ ^^

Đã gửi 12-08-2009 - 22:27

Hic chết mất thôi.Mấy vị huynh đề này nhàn gớm :oto:

Nếu một ngày bạn cảm thấy buồn và muốn khóc,hãy gọi cho tôi nhé.
Tôi không hứa sẽ làm cho bạn cười nhưng có thể tôi sẽ khóc cùng với bạn.
Nếu một ngày bạn muốn chạy chốn tất cả hãy gọi cho tôi.
Tôi không yêu cầu bạn dừng lại nhưng tôi sẽ chạy cùng với bạn.
Và nếu một ngày nào đó bạn không muốn nghe ai nói nữa,hãy gọi cho tôi nhé.
Tôi sẽ đến bên bạn và chỉ im lặng.
Nhưng nếu một ngày bạn gọi đến tôi mà không thấy tôi hồi âm...
Hãy chạy thật nhanh đến bên tôi vì lúc đó tôi mới là người cần bạn.

______________________
__________________________________
Vu Thanh TuUniversity of Engineering & Technology


#29 nguyen_ct

nguyen_ct

    Đại Tướng (Nguyên Soái) :)

  • Thành viên
  • 729 Bài viết
  • Giới tính:Nam
  • Đến từ:NBK (hn city) :H
  • Sở thích:http://batdongsan.com.vn/phong-thuy-toan-canh/phong-thuy-treo-tranh-trong-gia-dinh-ar37947
    http://megafun.vn/cuoc-song/tu-vi/phong-thuy/201107/Treo-tranh-Phong-thuy-nho-phai-chon-huong-150550/
    http://www.tranhcat.org/tu-van-tranh-cat/41-chon-va-treo-tranh-theo-phong-thuy.html
    http://www.blogphongthuy.com/?p=4632

Đã gửi 13-08-2009 - 10:16

em mà đưa lời giải giống anh Thắng chắc em đi luôn (độ kiên trì của anh làm em bái phục :oto: )
AT: yaaaaaaaaa! Tất cả là tương đối
FM:đúng vậy tất cả là tương đối với thời gian là hằng số bất biến
FN: thời gian được Chúa tạo ra và chia làm 2 chiều 1 chiều hướng về hiện tại 1 chiều về tương lai ,với mốc là hiện tại
AT:thế trước khi Chúa tạo ra thời gian thì Chúa làm gì ?
FM: Chúa tạo ra địa ngục cho những tên nào hỏi câu đó !!!! :D

#30 Toanlc_gift

Toanlc_gift

    Sĩ quan

  • Hiệp sỹ
  • 315 Bài viết
  • Giới tính:Nam
  • Đến từ:FU
  • Sở thích:Math

Đã gửi 13-08-2009 - 17:28

làm sao để chứng minh cái biểu thức khủng bố kia $\le 0$ thế anh Thắng
anh trình bày thế kia là tự nhận nó $\le 0$ đấy chứ :)

=.=


#31 mai quoc thang

mai quoc thang

    Thắng yêu Dung

  • Thành viên
  • 251 Bài viết
  • Giới tính:Nam
  • Đến từ:TP HCM
  • Sở thích:......

Đã gửi 13-08-2009 - 20:54

làm sao để chứng minh cái biểu thức khủng bố kia $\le 0$ thế anh Thắng
anh trình bày thế kia là tự nhận nó $\le 0$ đấy chứ :)


Cái này dễ lắm ...... mỗi ngày cậu chứng minh 1 chút chút ......... chừng nào kiếm ra cái gì sai thì báo cho tớ ....... riêng tớ thì làm ơn tha cho tớ ..... sau cái bài của cậu và sau khi tớ post cái đống đó lên ...... tớ ko còn 1 chút sức lực nào hết :) .....

#32 L_Euler

L_Euler

    Leonhard Euler

  • Hiệp sỹ
  • 938 Bài viết
  • Giới tính:Nam
  • Đến từ:France

Đã gửi 13-08-2009 - 21:53

Cái này dễ lắm ...... mỗi ngày cậu chứng minh 1 chút chút ......... chừng nào kiếm ra cái gì sai thì báo cho tớ ....... riêng tớ thì làm ơn tha cho tớ ..... sau cái bài của cậu và sau khi tớ post cái đống đó lên ...... tớ ko còn 1 chút sức lực nào hết :) .....

Em thấy anh Thắng tốn công vô ích rồi :) Làm ra cái đống kia chẳng giải quyết được cái gì cả :-<

#33 Toanlc_gift

Toanlc_gift

    Sĩ quan

  • Hiệp sỹ
  • 315 Bài viết
  • Giới tính:Nam
  • Đến từ:FU
  • Sở thích:Math

Đã gửi 14-08-2009 - 11:12

he he,tốn công như vậy nhưng vui :D

=.=


#34 Messi_ndt

Messi_ndt

    Admin batdangthuc.com

  • Thành viên
  • 679 Bài viết
  • Giới tính:Nam
  • Đến từ:FC Barcelona
  • Sở thích:Mathematical, Football and a girl.

Đã gửi 19-08-2010 - 16:07

Tớ có một lời giải phải nói là rất xấu theo phong cách của ngài Ji chen .

Lời giải :

Đặt :

$ m=a\sqrt{16a^4+65b^3c} \ ; \ n= b\sqrt{16b^4+65c^3a} \ ; \ t=c\sqrt{16c^4+65a^3b}$

Xét hàm :

$ F(T)=(T+m+n+t)(T+m+n-t)(T+m-n-t)(T-m-n-t)(T-m-n+t)(T-m+n+t)(T+m-n+t)(T-m+n-t) $

Ta có :

$ F \left( T \right) ={T}^{8}-64\,{b}^{6}{T}^{6}-64\,{a}^{6}{T}^{6}-260
\,{c}^{2}{a}^{3}b{T}^{6}-260\,{b}^{2}{c}^{3}a{T}^{6}-64\,{c}^{6}{T}^{6
}-260\,{a}^{2}{b}^{3}c{T}^{6}
$

$+25350\,{a}^{4}{b}^{6}{c}^{2}{T}^{4}+1024
\,{c}^{6}{b}^{6}{T}^{4}+1024\,{c}^{6}{a}^{6}{T}^{4}+4160\,{b}^{2}{c}^{
3}{a}^{7}{T}^{4}+25350\,{b}^{4}{c}^{6}{a}^{2}{T}^{4}+16900\,{b}^{5}{c}
^{4}{a}^{3}{T}^{4}+25350\,{c}^{4}{a}^{6}{b}^{2}{T}^{4} $

$ +4160\,{a}^{2}{b
}^{3}{c}^{7}{T}^{4}+4160\,{c}^{2}{a}^{9}b{T}^{4}+1024\,{a}^{6}{b}^{6}{
T}^{4}+4160\,{b}^{2}{c}^{9}a{T}^{4}+1536\,{a}^{12}{T}^{4}+1536\,{c}^{
12}{T}^{4}+1536\,{b}^{12}{T}^{4}+12480\,{c}^{8}{a}^{3}b{T}^{4}+4160\,{
c}^{2}{a}^{3}{b}^{7}{T}^{4} $

$ +12480\,{a}^{8}{b}^{3}c{T}^{4}+12480\,{b}^{
8}{c}^{3}a{T}^{4}+4160\,{a}^{2}{b}^{9}c{T}^{4}+16900\,{a}^{5}{b}^{4}{c
}^{3}{T}^{4}+16900\,{b}^{3}{c}^{5}{a}^{4}{T}^{4}-2704000\,{c}^{3}{a}^{
5}{b}^{10}{T}^{2}+133120\,{b}^{8}{c}^{9}a{T}^{2}+540800\,{b}^{9}{c}^{5
}{a}^{4}{T}^{2} $

$+1098500\,{b}^{7}{c}^{7}{a}^{4}{T}^{2}-811200\,{c}^{10}
{a}^{6}{b}^{2}{T}^{2} -1098500\,{c}^{6}{a}^{9}{b}^{3}{T}^{2}-665600\,{c
}^{2}{a}^{9}{b}^{7}{T}^{2}-2704000\,{c}^{5}{a}^{10}{b}^{3}{T}^{2}+
270400\,{b}^{4}{c}^{12}{a}^{2}{T}^{2} $

$ -199680\,{b}^{14}{c}^{3}a{T}^{2}+
133120\,{a}^{8}{b}^{3}{c}^{7}{T}^{2}-11148840\,{c}^{6}{a}^{6}{b}^{6}{T
}^{2}$

$ -16384\,{a}^{18}{T}^{2}-16384\,{c}^{18}{T}^{2}+540800\,{b}^{11}{c
}^{4}{a}^{3}{T}^{2}+1098500\,{c}^{7}{a}^{7}{b}^{4}{T}^{2}$

$ +270400a^6b^8c^4T^2 $

$+540800\,{a}^{4}{b}^{3}{c}^{11}{T}^{2}+1098500
\,{b}^{5}{c}^{8}{a}^{5}{T}^{2}+133120\,{b}^{7}{c}^{8}{a}^{3}{T}^{2}+
540800\,{a}^{11}{b}^{4}{c}^{3}{T}^{2}+270400\,{a}^{4}{b}^{6}{c}^{8}{T}
^{2}-199680\,{c}^{14}{a}^{3}b{T}^{2}$

$ -2704000\,{c}^{10}{a}^{3}{b}^{5}{T
}^{2}+133120\,{c}^{8}{a}^{9}b{T}^{2}+270400\,{c}^{4}{a}^{12}{b}^{2}{T}
^{2}+540800\,{c}^{9}{a}^{5}{b}^{4}{T}^{2}+1098500\,{c}^{5}{a}^{8}{b}^{
5}{T}^{2}+16384\,{c}^{12}{a}^{6}{T}^{2}+66560\,{a}^{2}{b}^{15}c{T}^{2}
-199680\,{a}^{14}{b}^{3}c{T}^{2}$

$ -665600\,{c}^{9}{a}^{7}{b}^{2}{T}^{2}+
66560\,{a}^{15}{c}^{2}b{T}^{2}-811200\,{b}^{10}{c}^{6}{a}^{2}{T}^{2}+
16384\,{c}^{12}{b}^{6}{T}^{2}+540800\,{a}^{9}{b}^{5}{c}^{4}{T}^{2}+
1098500\,{a}^{7}{b}^{7}{c}^{4}{T}^{2}$

$ +16384\,{a}^{6}{b}^{12}{T}^{2}-
1098500\,{b}^{6}{c}^{9}{a}^{3}{T}^{2}+270400\,{b}^{4}{c}^{6}{a}^{8}{T}
^{2}+16384\,{b}^{12}{c}^{6}{T}^{2}+16384\,{a}^{12}{b}^{6}{T}^{2}+
1098500\,{a}^{5}{b}^{8}{c}^{5}{T}^{2}-16384\,{b}^{18}{T}^{2}$

$ +66560\,{c}^{15}{b}^{2}a{T}^{2}-665600\,{c}^{7}{a}^{2}{b}^{9}{T}^{2}+66560\,{b}^
{13}{c}^{2}{a}^{3}{T}^{2}+133120\,{b}^{8}{c}^{3}{a}^{7}{T}^{2}+16384\,
{a}^{12}{c}^{6}{T}^{2}-811200\,{a}^{10}{b}^{6}{c}^{2}{T}^{2}-1098500\,
{a}^{6}{b}^{9}{c}^{3}{T}^{2} $

$ +66560\,{a}^{13}{b}^{2}{c}^{3}{T}^{2}+
66560\,{c}^{13}{a}^{2}{b}^{3}{T}^{2}+270400\,{a}^{4}{b}^{12}{c}^{2}{T}
^{2}+133120\,{a}^{8}{b}^{9}c{T}^{2}+1064960\,{b}^{20}{c}^{3}a+1064960
\,{a}^{20}{b}^{3}c+35414144\,{c}^{6}{a}^{12}{b}^{6} $

$ -71402500\,{b}^{9}{
c}^{10}{a}^{5}+35414144\,{a}^{6}{b}^{6}{c}^{12}+17576000\,{c}^{7}{a}^{
13}{b}^{4}-12979200\,{c}^{10}{a}^{6}{b}^{8}+1064960\,{c}^{20}{a}^{3}b-
12979200\,{a}^{17}{b}^{4}{c}^{3} $

$ +25958400\,{b}^{9}{c}^{11}{a}^{4}+
6489600\,{a}^{16}{b}^{6}{c}^{2}+107103750\,{b}^{10}{c}^{8}{a}^{6}+
73532420\,{c}^{8}{a}^{9}{b}^{7}+8652800\,{c}^{5}{a}^{10}{b}^{9}+
1064960\,{a}^{13}{b}^{2}{c}^{9}$

$ -12979200\,{a}^{15}{b}^{5}{c}^{4}-
12979200\,{c}^{15}{a}^{5}{b}^{4}-12979200\,{b}^{15}{c}^{5}{a}^{4}+
25958400\,{c}^{9}{a}^{11}{b}^{4}+6489600\,{c}^{14}{a}^{4}{b}^{6}+
25958400\,{a}^{9}{b}^{11}{c}^{4} $

$ -12979200\,{a}^{10}{b}^{12}{c}^{2}-
12979200\,{a}^{3}{b}^{17}{c}^{4}+17576000\,{c}^{8}{a}^{11}{b}^{5}+
1064960\,{c}^{15}{b}^{2}{a}^{7}-12979200\,{c}^{17}{b}^{3}{a}^{4}-
71402500\,{a}^{7}{b}^{11}{c}^{6} $

$ -17576000\,{b}^{9}{c}^{9}{a}^{6}+
17576000\,{b}^{7}{c}^{13}{a}^{4}+52728000\,{a}^{7}{b}^{7}{c}^{10}+
107103750\,{a}^{10}{b}^{8}{c}^{6}+52728000\,{a}^{5}{b}^{14}{c}^{5}-
12979200\,{c}^{8}{a}^{10}{b}^{6} $

$ -17576000\,{a}^{6}{b}^{15}{c}^{3}+
6489600\,{a}^{4}{b}^{18}{c}^{2}+17576000\,{a}^{12}{b}^{9}{c}^{3}-
17576000\,{b}^{6}{c}^{9}{a}^{9}-52728000\,{a}^{13}{b}^{7}{c}^{4}+
8652800\,{b}^{5}{c}^{10}{a}^{9} $

$ +4326400\,{a}^{3}{b}^{5}{c}^{16}+393216
\,{a}^{12}{c}^{12}-262144\,{c}^{18}{a}^{6}+393216\,{b}^{12}{c}^{12}-
262144\,{a}^{18}{c}^{6}-262144\,{b}^{18}{c}^{6}+35414144\,{a}^{6}{b}^{
12}{c}^{6}+393216\,{a}^{12}{b}^{12} $

$+17576000\,{a}^{7}{b}^{13}{c}^{4}-
262144\,{a}^{18}{b}^{6}+4326400\,{a}^{5}{b}^{16}{c}^{3}-71402500\,{c}^
{9}{a}^{10}{b}^{5}+4326400\,{c}^{4}{a}^{12}{b}^{8} $

$ +1064960\,{c}^{2}{a}
^{15}{b}^{7}+8652800\,{c}^{3}{a}^{11}{b}^{10}+1064960\,{c}^{2}{a}^{9}{
b}^{13}+6489600\,{c}^{16}{a}^{6}{b}^{2}+17576000\,{c}^{12}{a}^{9}{b}^{
3}+17850625\,{c}^{8}{a}^{12}{b}^{4}-262144\,{c}^{18}{b}^{6} $

$ -71402500\,
{c}^{7}{a}^{11}{b}^{6}-262144\,{a}^{6}{b}^{18}-52728000\,{c}^{11}{a}^{
8}{b}^{5}-17576000\,{c}^{6}{a}^{9}{b}^{9}-52728000\,{a}^{11}{b}^{8}{c}
^{5}+3194880\,{a}^{15}{c}^{8}b+17850625\,{a}^{8}{b}^{12}{c}^{4}-
3194880\,{c}^{14}{a}^{9}b $

$ +3194880\,{c}^{13}{a}^{8}{b}^{3}-71402500\,{b
}^{10}{c}^{5}{a}^{9}+3194880\,{b}^{13}{c}^{8}{a}^{3}-3194880\,{a}^{14}
{c}^{7}{b}^{3}-17576000\,{c}^{6}{a}^{15}{b}^{3}-3194880\,{b}^{14}{c}^{
9}a-12979200\,{c}^{10}{a}^{12}{b}^{2} $

$ +3194880\,{c}^{15}{b}^{8}a+
8652800\,{c}^{11}{a}^{10}{b}^{3}-3194880\,{c}^{14}{b}^{7}{a}^{3}+
3194880\,{a}^{8}{b}^{15}c-3194880\,{a}^{7}{b}^{14}{c}^{3}-52728000\,{c
}^{13}{a}^{7}{b}^{4}-3194880\,{a}^{14}{b}^{9}c $

$ +3194880\,{a}^{13}{b}^{8
}{c}^{3}-1064960\,{a}^{19}{b}^{2}{c}^{3}-1064960\,{a}^{21}{c}^{2}b-
1064960\,{b}^{21}{a}^{2}c-1064960\,{b}^{19}{c}^{2}{a}^{3}-1064960\,{c}
^{19}{a}^{2}{b}^{3}-1064960\,{c}^{21}{b}^{2}a+52728000\,{c}^{7}{a}^{7}
{b}^{10}+107103750\,{c}^{10}{a}^{8}{b}^{6}$

$ +6489600\,{c}^{4}{a}^{18}{b}
^{2}+52728000\,{c}^{5}{a}^{14}{b}^{5}+17576000\,{c}^{5}{a}^{8}{b}^{11}
+6489600\,{c}^{4}{a}^{6}{b}^{14}+73532420\,{b}^{8}{c}^{9}{a}^{7}-
52728000\,{b}^{11}{c}^{8}{a}^{5}-71402500\,{b}^{7}{c}^{11}{a}^{6}+
52728000\,{b}^{5}{c}^{14}{a}^{5}$

$-12979200\,{b}^{10}{c}^{6}{a}^{8}-
52728000\,{b}^{13}{c}^{7}{a}^{4}+6489600\,{b}^{16}{c}^{6}{a}^{2}+
17576000\,{b}^{12}{c}^{9}{a}^{3}-12979200\,{b}^{10}{c}^{12}{a}^{2}+
6489600\,{b}^{4}{c}^{6}{a}^{14}+52728000\,{b}^{7}{c}^{7}{a}^{10}+
4326400\,{c}^{5}{a}^{16}{b}^{3}$

$+4326400\,{b}^{4}{c}^{12}{a}^{8}+65536
\,{a}^{24}+65536\,{b}^{24}+65536\,{c}^{24}+17850625\,{b}^{8}{c}^{12}{a
}^{4}-17576000\,{b}^{6}{c}^{15}{a}^{3}$

$ +6489600\,{b}^{4}{c}^{18}{a}^{2}
+73532420\,{b}^{9}{c}^{7}{a}^{8}+4326400\,{b}^{12}{c}^{8}{a}^{4}+
1064960\,{a}^{2}{b}^{15}{c}^{7}+8652800\,{a}^{3}{b}^{11}{c}^{10}+
1064960\,{a}^{2}{b}^{9}{c}^{13}+8652800\,{a}^{5}{b}^{10}{c}^{9}+
17576000\,{b}^{8}{c}^{11}{a}^{5} $

Ta chứng minh : $ F((a+b+c)^3) \leq 0 $ .

Không mất tính tổng quát giả sử : $ c=min\{a;b;c\} $

Đặt : $ a=x+c \ ; \ b=y+c \ ; \ x,y \geq 0 $

Ta có :

$ F((a+b+c)^3)=-40779396864\,{y}^{2}{c}^{22}-40779396864\,{x}^{2}{c}^{22}+40779396864
\,xy{c}^{22}-4542474816\,x{y}^{2}{c}^{21}-345212036352\,{y}^{3}{c}^{21
}$

$+143031852864\,{x}^{2}y{c}^{21}-345212036352\,{x}^{3}{c}^{21}-
1389000702368\,x{y}^{3}{c}^{20}$

$-1376117913104\,{x}^{4}{c}^{20}+
950511111888\,{x}^{2}{y}^{2}{c}^{20}-1376117913104\,{y}^{4}{c}^{20}-
355980408608\,{x}^{3}y{c}^{20} $

$+3268231889920\,{x}^{3}{y}^{2}{c}^{19}-
374884969280\,{x}^{2}{y}^{3}{c}^{19}-6931813722240\,x{y}^{4}{c}^{19}-
3400454771360\,{x}^{5}{c}^{19}$

$-3400454771360\,{y}^{5}{c}^{19}-
3588270683040\,{x}^{4}y{c}^{19}+8694195294640\,{x}^{3}{y}^{3}{c}^{18}-
5761729245152\,{y}^{6}{c}^{18}$

$-11706313884304\,{x}^{5}y{c}^{18}+
3141160960560\,{x}^{4}{y}^{2}{c}^{18}-5761729245152\,{x}^{6}{c}^{18}-
12058404371040\,{x}^{2}{y}^{4}{c}^{18}$

$-18331951300624\,x{y}^{5}{c}^{18
}-7090226946264\,{x}^{5}{y}^{2}{c}^{17}-31910915937800\,{y}^{6}x{c}^{
17}+23905249549480\,{x}^{4}{y}^{3}{c}^{17}$

$+277170784280\,{x}^{3}{y}^{4
}{c}^{17}-6968375977248\,{y}^{7}{c}^{17}-6968375977248\,{x}^{7}{c}^{17
}-40052951782344\,{x}^{2}{y}^{5}{c}^{17}$

$-23021578634200\,{x}^{6}y{c}^{
17}-39365392036908\,{y}^{7}x{c}^{16}-6001362257655\,{x}^{8}{c}^{16}-
6001362257655\,{y}^{8}{c}^{16}$

$-28865583152230\,{x}^{6}{y}^{2}{c}^{16}-
75447433406390\,{y}^{6}{x}^{2}{c}^{16}+28216218821296\,{x}^{5}{y}^{3}{
c}^{16}+36554051039115\,{x}^{4}{y}^{4}{c}^{16}$

$-31086101515068\,{x}^{7}
y{c}^{16}-37290606415024\,{x}^{3}{y}^{5}{c}^{16}-30153209881820\,{x}^{
8}y{c}^{15}+10805081693192\,{x}^{4}{y}^{5}{c}^{15}$

$-96584908345028\,{y}
^{7}{x}^{2}{c}^{15}-35175435038080\,{y}^{8}x{c}^{15}+7807646747492\,{x
}^{6}{y}^{3}{c}^{15}-3410350133620\,{y}^{9}{c}^{15}-3410350133620\,{x}
^{9}{c}^{15}$

$-50439484795348\,{x}^{7}{y}^{2}{c}^{15}-92817396270488\,{y
}^{6}{x}^{3}{c}^{15}+69630079888012\,{x}^{5}{y}^{4}{c}^{15}-
130810448874020\,{y}^{7}{x}^{3}{c}^{14}-56922248312170\,{x}^{8}{y}^{2}
{c}^{14}$

$+65909158471920\,{x}^{6}{y}^{4}{c}^{14}+71194715124304\,{x}^{5
}{y}^{5}{c}^{14}-794703777734\,{y}^{10}{c}^{14}-794703777734\,{x}^{10}
{c}^{14}-89088373623100\,{y}^{8}{x}^{2}{c}^{14}$

$-26123753934440\,{x}^{7
}{y}^{3}{c}^{14}-48174554126260\,{y}^{6}{x}^{4}{c}^{14}-22215280820260
\,{y}^{9}x{c}^{14}-20992933406700\,{x}^{9}y{c}^{14}-98489910922060\,{y
}^{7}{x}^{4}{c}^{13} $

$-9739722607384\,{x}^{10}y{c}^{13}+655247249392\,{y
}^{11}{c}^{13}-48254955142000\,{x}^{8}{y}^{3}{c}^{13}-126366073881940
\,{y}^{8}{x}^{3}{c}^{13}$

$+655247249392\,{x}^{11}{c}^{13}+26125041317760
\,{y}^{6}{x}^{5}{c}^{13}-45531851756140\,{x}^{9}{y}^{2}{c}^{13}-
59817646566960\,{y}^{9}{x}^{2}{c}^{13}+91280713124440\,{x}^{6}{y}^{5}{
c}^{13}-8593850024204\,{y}^{10}x{c}^{13}$

$+29047136848280\,{x}^{7}{y}^{4
}{c}^{13}-26458829532820\,{y}^{7}{x}^{5}{c}^{12}-47020363510480\,{x}^{
9}{y}^{3}{c}^{12}+63968230507640\,{x}^{7}{y}^{5}{c}^{12}$

$-26286643079152\,{x}^{10}{y}^{2}{c}^{12}-240418349520\,{y}^{11}x{c}^{12
}-106833276607195\,{y}^{8}{x}^{4}{c}^{12}-28011437835512\,{y}^{10}{x}^
{2}{c}^{12}-7840548636500\,{x}^{8}{y}^{4}{c}^{12}$

$-1908230448980\,{x}^{11}y{c}^{12}+888905253383\,{y}^{12}{c}^{12}+67054530571438\,{x}^{6}{y}
^{6}{c}^{12}+888905253383\,{x}^{12}{c}^{12}-88467848272280\,{y}^{9}{x}
^{3}{c}^{12}-7334931596240\,{y}^{11}{x}^{2}{c}^{11}$

$-10411323754040\,{x}^{11}{y}^{2}{c}^{11}+2361894748848\,{y}^{12}x{c}^{11}+1206814675688\,
{x}^{12}y{c}^{11}+58083836666004\,{x}^{7}{y}^{6}{c}^{11}-
49827013230460\,{y}^{8}{x}^{5}{c}^{11}-45158700786088\,{y}^{10}{x}^{3}
{c}^{11}$

$+23840307740944\,{x}^{6}{y}^{7}{c}^{11}+546011816620\,{x}^{13}
{c}^{11}-31215013301608\,{x}^{10}{y}^{3}{c}^{11}+24276793517940\,{x}^{
8}{y}^{5}{c}^{11}-22787922723920\,{x}^{9}{y}^{4}{c}^{11}+546011816620
\,{y}^{13}{c}^{11}$

$ -78735217905360\,{y}^{9}{x}^{4}{c}^{11}-
15987366180552\,{y}^{11}{x}^{3}{c}^{10}+1385658257020\,{x}^{13}y{c}^{
10}+887362800558\,{y}^{12}{x}^{2}{c}^{10}-42008727933836\,{y}^{10}{x}^
{4}{c}^{10}+29386455934934\,{x}^{8}{y}^{6}{c}^{10}$

$+425141134060\,{x}^{9}{y}^{5}{c}^{10}+194107227610\,{x}^{14}{c}^{10}-4767920597576\,{x}^{6
}{y}^{8}{c}^{10}+31649604172076\,{x}^{7}{y}^{7}{c}^{10}-42267014915860
\,{y}^{9}{x}^{5}{c}^{10}+1902970539260\,{y}^{13}x{c}^{10}$

$ -19261789310856\,{x}^{10}{y}^{4}{c}^{10}+194107227610\,{y}^{14}{c}^{10}
-2103047767262\,{x}^{12}{y}^{2}{c}^{10}-14928358674112\,{x}^{11}{y}^{3
}{c}^{10}-23705381781376\,{y}^{10}{x}^{5}{c}^{9}-5046511585140\,{x}^{
12}{y}^{3}{c}^{9}$

$+23830716048\,{y}^{15}{c}^{9}-11719135055000\,{x}^{6}
{y}^{9}{c}^{9}-16379088762140\,{y}^{11}{x}^{4}{c}^{9}+23830716048\,{x}
^{15}{c}^{9}+9852566232560\,{x}^{7}{y}^{8}{c}^{9}+864660823600\,{y}^{
14}x{c}^{9}$

$+718950711780\,{x}^{14}y{c}^{9}-3051453687580\,{y}^{12}{x}^
{3}{c}^{9}+18609374048160\,{x}^{8}{y}^{7}{c}^{9}+2055748110160\,{y}^{
13}{x}^{2}{c}^{9}+8571888423180\,{x}^{9}{y}^{6}{c}^{9}-5710720353776\,
{x}^{10}{y}^{5}{c}^{9}$

$+489157481700\,{x}^{13}{y}^{2}{c}^{9}-
10355975584500\,{x}^{11}{y}^{4}{c}^{9}+407823125020\,{y}^{13}{x}^{3}{c
}^{8}-7901167586150\,{x}^{6}{y}^{10}{c}^{8}+626759521940\,{x}^{14}{y}^
{2}{c}^{8}$

$+485209265040\,{x}^{7}{y}^{9}{c}^{8}-4481753621960\,{y}^{12}
{x}^{4}{c}^{8}-9533263186188\,{y}^{11}{x}^{5}{c}^{8}-3938686609225\,{x
}^{12}{y}^{4}{c}^{8}$

$ +539560240810\,{x}^{10}{y}^{6}{c}^{8}+238786738576
\,{y}^{15}x{c}^{8}-1038341117620\,{x}^{13}{y}^{3}{c}^{8}-15507566105\,
{x}^{16}{c}^{8} $

$+7528857174675\,{x}^{8}{y}^{8}{c}^{8}-4050740929028\,{x
}^{11}{y}^{5}{c}^{8}+1170135212330\,{y}^{14}{x}^{2}{c}^{8}-15507566105
\,{y}^{16}{c}^{8}$

$+223810763536\,{x}^{15}y{c}^{8}+6687472202300\,{x}^{9
}{y}^{7}{c}^{8}+568551227680\,{y}^{14}{x}^{3}{c}^{7}-715847314400\,{y}
^{13}{x}^{4}{c}^{7}-3318519957316\,{x}^{6}{y}^{11}{c}^{7}-11281109820
\,{x}^{14}{y}^{3}{c}^{7}$

$-10596866760\,{y}^{17}{c}^{7}+24202736900\,{y}
^{16}x{c}^{7}+411265914372\,{y}^{15}{x}^{2}{c}^{7}-1061526266980\,{x}^
{13}{y}^{4}{c}^{7}$

$+289916155972\,{x}^{15}{y}^{2}{c}^{7}-1674504463572
\,{x}^{12}{y}^{5}{c}^{7}-10596866760\,{x}^{17}{c}^{7}+1416634815020\,{
x}^{10}{y}^{7}{c}^{7}$

$+1899336214100\,{x}^{8}{y}^{9}{c}^{7}-
783779117776\,{x}^{11}{y}^{6}{c}^{7}-1169218051980\,{x}^{7}{y}^{10}{c}
^{7}+2984800218400\,{x}^{9}{y}^{8}{c}^{7}$

$-2795893032392\,{y}^{12}{x}^{
5}{c}^{7}+31883469180\,{x}^{16}y{c}^{7}-432218020392\,{x}^{12}{y}^{6}{
c}^{6}+237508866744\,{y}^{15}{x}^{3}{c}^{6}$

$-972801642412\,{x}^{6}{y}^{
12}{c}^{6}-184892597980\,{x}^{14}{y}^{4}{c}^{6}+80831600804\,{x}^{15}{
y}^{3}{c}^{6}+83786222520\,{x}^{16}{y}^{2}{c}^{6}$

$-472097972380\,{x}^{
13}{y}^{5}{c}^{6}-3107203010\,{x}^{18}{c}^{6}-11418784440\,{y}^{17}x{c
}^{6}+737097909890\,{x}^{10}{y}^{8}{c}^{6}+14803422700\,{y}^{14}{x}^{4
}{c}^{6}$

$-655793824136\,{x}^{7}{y}^{11}{c}^{6}+211091427980\,{x}^{8}{y}
^{10}{c}^{6}+869440183280\,{x}^{9}{y}^{9}{c}^{6}-583468069920\,{y}^{13
}{x}^{5}{c}^{6}$

$-6829628700\,{x}^{17}y{c}^{6}+78324754304\,{x}^{11}{y}^
{7}{c}^{6}+95911483330\,{y}^{16}{x}^{2}{c}^{6}-3107203010\,{y}^{18}{c}
^{6}-91395879700\,{x}^{14}{y}^{5}{c}^{5}$

$+162589266640\,{x}^{9}{y}^{10}
{c}^{5}-55823773252\,{x}^{12}{y}^{7}{c}^{5}-78303104680\,{y}^{14}{x}^{
5}{c}^{5}-344594340\,{x}^{19}{c}^{5}$

$-5406008500\,{x}^{18}y{c}^{5}+
32813191240\,{x}^{16}{y}^{3}{c}^{5}+45210904768\,{y}^{15}{x}^{4}{c}^{5
}-127077375040\,{x}^{13}{y}^{6}{c}^{5}$

$-38780669116\,{x}^{8}{y}^{11}{c}
^{5}+104822931804\,{x}^{11}{y}^{8}{c}^{5}-344594340\,{y}^{19}{c}^{5}+
61838306320\,{y}^{16}{x}^{3}{c}^{5}$

$-12045226892\,{x}^{15}{y}^{4}{c}^{5
}-6689917100\,{y}^{18}x{c}^{5}-200044380692\,{x}^{7}{y}^{12}{c}^{5}+
15598084800\,{x}^{17}{y}^{2}{c}^{5}$

$+223839495160\,{x}^{10}{y}^{9}{c}^{
5}-203819138060\,{x}^{6}{y}^{13}{c}^{5}+13385794980\,{y}^{17}{x}^{2}{c
}^{5}+1560865030\,{x}^{18}{y}^{2}{c}^{4}$

$-24105888010\,{x}^{14}{y}^{6}{
c}^{4}-29953163730\,{x}^{6}{y}^{14}{c}^{4}-3999521728\,{y}^{15}{x}^{5}
{c}^{4}$

$+43588960498\,{x}^{10}{y}^{10}{c}^{4}+34937613760\,{x}^{11}{y}^
{9}{c}^{4}-21628269865\,{x}^{8}{y}^{12}{c}^{4}+13781514260\,{y}^{16}{x
}^{4}{c}^{4}$

$+88274106\,{y}^{20}{c}^{4}+3227891270\,{x}^{12}{y}^{8}{c}^
{4}-1853232300\,{y}^{19}x{c}^{4}-20972645460\,{x}^{13}{y}^{7}{c}^{4}+
10844622900\,{y}^{17}{x}^{3}{c}^{4}$

$-40018711720\,{x}^{7}{y}^{13}{c}^{4
}+88274106\,{x}^{20}{c}^{4}-11076565468\,{x}^{15}{y}^{5}{c}^{4}+
3365694300\,{x}^{16}{y}^{4}{c}^{4}$

$-1635221520\,{x}^{19}y{c}^{4}+
16427755380\,{x}^{9}{y}^{11}{c}^{4}+7370610540\,{x}^{17}{y}^{3}{c}^{4}
+422195940\,{y}^{18}{x}^{2}{c}^{4}$

$-2944137368\,{x}^{15}{y}^{6}{c}^{3}-
23044320\,{x}^{19}{y}^{2}{c}^{3}+6546766992\,{x}^{11}{y}^{10}{c}^{3}+
10186180\,{x}^{9}{y}^{12}{c}^{3}$

$-4490978440\,{x}^{8}{y}^{13}{c}^{3}-
1808057940\,{x}^{13}{y}^{8}{c}^{3}-241562880\,{y}^{19}{x}^{2}{c}^{3}+
2813069120\,{x}^{12}{y}^{9}{c}^{3}$

$+1026647520\,{x}^{18}{y}^{3}{c}^{3}+
5262736452\,{x}^{10}{y}^{11}{c}^{3}-5377224000\,{x}^{7}{y}^{14}{c}^{3}
-2882174948\,{x}^{6}{y}^{15}{c}^{3}$

$+1248027640\,{y}^{18}{x}^{3}{c}^{3}
-323853948\,{y}^{20}x{c}^{3}-515361720\,{x}^{16}{y}^{5}{c}^{3}+
2351959980\,{y}^{17}{x}^{4}{c}^{3}$

$+1145456760\,{x}^{17}{y}^{4}{c}^{3}+
737468560\,{y}^{16}{x}^{5}{c}^{3}-302103648\,{x}^{20}y{c}^{3}-
3810642880\,{x}^{14}{y}^{7}{c}^{3}$

$+46621620\,{x}^{21}{c}^{3}+46621620
\,{y}^{21}{c}^{3}-362756220\,{x}^{14}{y}^{8}{c}^{2}+179266140\,{y}^{17
}{x}^{5}{c}^{2}-206429766\,{x}^{16}{y}^{6}{c}^{2}+713792616\,{x}^{11}{
y}^{11}{c}^{2}$

$+84094740\,{y}^{19}{x}^{3}{c}^{2}+3077760\,{x}^{13}{y}^{
9}{c}^{2}-36504720\,{y}^{21}x{c}^{2}-51787656\,{y}^{20}{x}^{2}{c}^{2}+
82316340\,{x}^{19}{y}^{3}{c}^{2}$

$-29604456\,{x}^{20}{y}^{2}{c}^{2}+
528846458\,{x}^{12}{y}^{10}{c}^{2}-221341760\,{x}^{9}{y}^{13}{c}^{2}+
347596168\,{x}^{10}{y}^{12}{c}^{2}$

$-151217856\,{x}^{6}{y}^{16}{c}^{2}-
397558952\,{x}^{15}{y}^{7}{c}^{2}+9630900\,{y}^{22}{c}^{2}+66187200\,{
x}^{17}{y}^{5}{c}^{2}-526026990\,{x}^{8}{y}^{14}{c}^{2}+9630900\,{x}^{
22}{c}^{2}$

$-464025352\,{x}^{7}{y}^{15}{c}^{2}-35510220\,{x}^{21}y{c}^{2
}+243149230\,{y}^{18}{x}^{4}{c}^{2}+162763080\,{x}^{18}{y}^{4}{c}^{2}+
2240208\,{y}^{20}{x}^{3}c$

$+13943700\,{y}^{19}{x}^{4}c+45272568\,{x}^{12
}{y}^{11}c+16392840\,{y}^{18}{x}^{5}c-17997600\,{x}^{14}{y}^{9}c+
11657520\,{x}^{19}{y}^{4}c$

$-29944080\,{x}^{15}{y}^{8}c-5339880\,{x}^{17
}{y}^{6}c-4620060\,{y}^{21}{x}^{2}c+41882688\,{x}^{11}{y}^{12}c-
33978240\,{x}^{8}{y}^{15}c $

$+16211280\,{x}^{13}{y}^{10}c-22573176\,{x}^{
7}{y}^{16}c+1053000\,{x}^{23}c+1053000\,{y}^{23}c-21652776\,{x}^{16}{y
}^{7}c-25476240\,{x}^{9}{y}^{14}c $

$-2478600\,{y}^{22}xc+2673108\,{x}^{20
}{y}^{3}c+7255320\,{x}^{10}{y}^{13}c-1617720\,{x}^{6}{y}^{17}c+
12147300\,{x}^{18}{y}^{5}c $

$-2478600\,{x}^{22}yc-3625560\,{x}^{21}{y}^{2
}c-81000\,{y}^{23}x+329346\,{y}^{20}{x}^{4}-39960\,{y}^{21}{x}^{3}-
965520\,{x}^{15}{y}^{9}$

$-1001169\,{x}^{16}{y}^{8}+838800\,{x}^{11}{y}^{
13}-181080\,{x}^{10}{y}^{14}-364680\,{x}^{7}{y}^{17}+838800\,{x}^{13}{
y}^{11}$

$+329346\,{x}^{20}{y}^{4}+612360\,{y}^{19}{x}^{5}+50625\,{x}^{24
}-181080\,{x}^{14}{y}^{10}-153900\,{y}^{22}{x}^{2}+104580\,{y}^{18}{x}
^{6}$

$+612360\,{x}^{19}{y}^{5}-81000\,{x}^{23}y-39960\,{x}^{21}{y}^{3}-
364680\,{x}^{17}{y}^{7} $

$+104580\,{x}^{18}{y}^{6}+1703196\,{x}^{12}{y}^{12}+50625\,{y}^{24}-1001169\,{x}^{8}{y}^{16}-153900\,{x}^{22}{y}^{2}-
965520\,{x}^{9}{y}^{15} \leq 0

$

Từ đó có $ (a+b+c)^3 $ bé hơn hoặc bằng nghiệm lớn nhất của phương trình $ F(T)=0 $ là $ m+n+t $ .

Hay là :

$ a\sqrt{16a^4+65b^3c} +b\sqrt{16b^4+65c^3a} +c\sqrt{16c^4+65a^3b} \ge (a+b+c)^3 $

Đó chính là đpcm . ;))

P/S : dù là maple nhưng phải nói là chơi trò này mất sức quá :D

Ôi mẹ ơi, Ngài Ji chen.

#35 CD13

CD13

    Thượng úy

  • Thành viên
  • 1454 Bài viết
  • Giới tính:Nam

Đã gửi 20-08-2010 - 23:28

Chúa trời đang mở cửa chờ anh Thắng!




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh