Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng đồ thị hàm số sau có ba điểm uốn thẳng hàng: $y = \dfrac{{2x - 1}}{{x^2 - x + 1}}$

psw

  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Thanh Ha

Thanh Ha

    Binh nhất

  • Thành viên
  • 28 Bài viết
  • Giới tính:Nam

Đã gửi 23-05-2009 - 08:43

Chứng minh rằng đồ thị hàm số sau có ba điểm uốn thẳng hàng: $y = \dfrac{{2x - 1}}{{x^2 - x + 1}}$



#2 le_hoang1995

le_hoang1995

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Vân Nội

Đã gửi 01-08-2012 - 17:17

TXD:$D=\mathbb{R}$
Tính đạo hàm
\begin{align}
y'&=\frac{2(x^2-x+1)-(2x-1).(2x-1)}{(x^2-x+1)^2}\\
&=\frac{2x^2-2x+2-4x^2+4x-1}{(x^2-x+1)^2}=\frac{-2x^2+2x+1}{(x^2-x+1)^2}\\
y''&=\frac{(-4x+2)(x^2-x+1)^2-2(x^2-x+1)(2x-1)(-2x^2+2x+1)}{(x^2-x+1)^4}\\
&=\frac{(4x-2)\left [ (x^2-x+1)-(-2x^2+2x+1) \right ]}{(x^2-x+1)^3}\\
&=\frac{(4x-2)(3x^2-3x)}{(x^2-x+1)^3}\\
\end{align}
Giải phương trình $y''=0$ để tìm hoành độ điểm uốn ta được các nghiệm :$x=0;x=1;x=\frac{1}{2}$
Vậy tọa độ các điểm uốn là $A(0;-1);B(1;1);C(\frac{1}{2};0)$.
Dễ thấy 3 điểm trên đều nằm trên đường thẳng $y=2x-1$
Suy ra đồ thị hàm số trên có 3 điểm uốn thẳng hàng
_________________
Bổ sung: để chắc chắn các điểm trên là 3 điểm uốn của đồ thị, ta chỉ cần xét dấu đạo hàm bậc hai của chúng.
Với $x <0\Rightarrow y''<0$ suy ra hàm số lõm ( dạng úp xuống dưới)
Với $x \in(0;\frac{1}{2})\Rightarrow y''>0$ hàm số lồi ( ngửa lên trên)
Với $x\in (\frac{1}{2};1)\Rightarrow y''<0$ hàm số lõm( úp )
Với $x>1\Rightarrow y''>0$ hàm số lồi (ngửa)

Bài viết đã được chỉnh sửa nội dung bởi le_hoang1995: 01-08-2012 - 18:22


#3 hoangtrunghieu22101997

hoangtrunghieu22101997

    Thượng sĩ

  • Thành viên
  • 206 Bài viết
  • Giới tính:Nam
  • Đến từ:Thái Bình
  • Sở thích:TAEKWONDO

Đã gửi 01-08-2012 - 18:50

$\fbox{Liên tưởng}$Một bài toán tổng quát dạng tương tự
CMR: Với mọi $a\in R$
Đồ thị hàm số $y=\dfrac{x+a}{x^2+x+1}$ luôn có 3 điểm uốn thẳng hàng
Cách chứng minh:

File gửi kèm


Sự im lặng du dương hơn bất kỳ bản nhạc nào.


#4 PSW

PSW

    Những bài toán trong tuần

  • Thành viên
  • 488 Bài viết
  • Giới tính:Nam

Đã gửi 02-08-2012 - 21:50

Chấm điểm:
le_hoang1995: 10 điểm
hoangtrunghieu22101997: 5 điểm

1) Thể lệ
2) Danh sách các bài toán đã qua: 1-100, 101-200, 201-300, 301-400
Còn chờ gì nữa mà không tham gia!  :luoi:
 






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh