Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

tich phan


  • Please log in to reply
Chủ đề này có 12 trả lời

#1 chiphuong92

chiphuong92

    Binh nhất

  • Thành viên
  • 41 Bài viết
  • Giới tính:Nam
  • Đến từ:10 A1 Chuyên Biên Hòa Hà Nam
  • Sở thích:toan hoc

Đã gửi 16-03-2010 - 16:07

$(*):limits_{0}^{1}$ $:frac{ln(1 + x)}/({1 + $x^{2})$ }$
ban nao hieu de chinh sua gium !!!!!!!!

Bài viết đã được chỉnh sửa nội dung bởi chiphuong92: 16-03-2010 - 16:57

Cái ngày mà một phụ nữ đi qua trước mặt bạn, tỏa ánh sáng cho bạn bước theo chân nàng, thì cái ngày đó bạn khốn đốn rồi, bạn đã yêu .Hình ảnh của nàng sẽ đưa bạn sang một lĩnh vực rực rỡ của tâm hồn bạn, nơi không có gì phải cũng chẳng có gì trái, đó là lĩnh vực của cái đẹp và tình yêu . Lúc này bạn chỉ còn một việc để làm : " Nghĩ đến nàng thiết tha đến mức nàng buộc phải nghĩ đến bạn "

#2 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 16-03-2010 - 18:09

Chắc đề thế này!
$\int\limits_0^1 {\dfrac{{\ln (1 + x)}}{{1 + {x^2}}}} dx$
Love Lan Anh !

#3 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 16-03-2010 - 23:44

Bài này khá lắt léo. Phải kinh nghiệm mới làm được!
Đặt $ x=tanu $ đưa về tích phân với ẩn u.
TÍnh tích phân này bằng cách: đặt $ t=\dfrac{\pi}{4}-u$
Biến đổi 1 tí là ra!
Love Lan Anh !

#4 chiphuong92

chiphuong92

    Binh nhất

  • Thành viên
  • 41 Bài viết
  • Giới tính:Nam
  • Đến từ:10 A1 Chuyên Biên Hòa Hà Nam
  • Sở thích:toan hoc

Đã gửi 17-03-2010 - 20:29

bạn làm cụ thể giùm nhớ! tới t = pi/4 - x thi minh ko lam dc
Cái ngày mà một phụ nữ đi qua trước mặt bạn, tỏa ánh sáng cho bạn bước theo chân nàng, thì cái ngày đó bạn khốn đốn rồi, bạn đã yêu .Hình ảnh của nàng sẽ đưa bạn sang một lĩnh vực rực rỡ của tâm hồn bạn, nơi không có gì phải cũng chẳng có gì trái, đó là lĩnh vực của cái đẹp và tình yêu . Lúc này bạn chỉ còn một việc để làm : " Nghĩ đến nàng thiết tha đến mức nàng buộc phải nghĩ đến bạn "

#5 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 17-03-2010 - 20:46

Bài làm cụ thể!

Hình gửi kèm

  • Capture.PNG

Love Lan Anh !

#6 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 17-03-2010 - 21:21

Nhiều con tích phân xác định dùng mẹo mới làm được.
Ví như con này nữa:
$\int\limits_0^{\pi /2} {\ln ({\mathop{\rm s}\nolimits} i{\rm{nx}})} dx$
Còn một số dạng tích phân đặc biệt nữa.
Nhưng chắc thi đại học thì chỉ cơ bản thôi! Ko khó! Nói chung tích phân đề đại học là ăn được!
Chỉ ngán con bất dẳng thức thôi!
Love Lan Anh !

#7 xiloxila

xiloxila

    Binh nhất

  • Thành viên
  • 37 Bài viết
  • Giới tính:Nam
  • Đến từ:hcmut

Đã gửi 19-03-2010 - 12:29

Nhiều con tích phân xác định dùng mẹo mới làm được.
Ví như con này nữa:
I=$\int\limits_0^{\pi /2} {\ln ({\mathop{\rm s}\nolimits} i{\rm{nx}})} dx$
Còn một số dạng tích phân đặc biệt nữa.
Nhưng chắc thi đại học thì chỉ cơ bản thôi! Ko khó! Nói chung tích phân đề đại học là ăn được!
Chỉ ngán con bất dẳng thức thôi!

theo mình nghỉ thế này
đặt $ J= \int\limits_{0}^{\pi/2} ln(cosx)dx$
giải hệ $ \left\{\begin{array}{l}I-J=0\\I+J= \int\limits_{0}^{\pi/2} [ln(sinx)+ln(cosx)]dx\end{array}\right. $
hoặc là dùng tích phân từng phần

#8 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 19-03-2010 - 12:32

Tích phân từng phần thì ko đc đâu!
Bạn thử làm cụ thể xem sao, theo cách đặt của bạn ấy!
Love Lan Anh !

#9 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 19-03-2010 - 15:44

Các bác làm thử con này xem!
Tính tính phân sau: ( $ n \in N*$)
$\int\limits_0^1 {\dfrac{{dx}}{{\sqrt[n]{{1 - {x^n}}}}}} $
Love Lan Anh !

#10 xiloxila

xiloxila

    Binh nhất

  • Thành viên
  • 37 Bài viết
  • Giới tính:Nam
  • Đến từ:hcmut

Đã gửi 19-03-2010 - 17:09

Các bác làm thử con này xem!
Tính tính phân sau: ( $ n \in N*$)
$\int\limits_0^1 {\dfrac{{dx}}{{\sqrt[n]{{1 - {x^n}}}}}} $

M nghỉ là dùng lượng giác nhưng mà $ f(x) $là hàm không liên tục nên tích phân không có nghĩa
[Tích phân từng phần thì ko đc đâu!
Bạn thử làm cụ thể xem sao, theo cách đặt của bạn ấy!]
tại vì ẩu quá nên không để ý tại $x=0$ tích phân không có nghĩa M nhớ là SBT cũng có nhưng mà tìm nguyên hàm chứ không phải tích phân

Bài viết đã được chỉnh sửa nội dung bởi xiloxila: 19-03-2010 - 17:17


#11 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 19-03-2010 - 17:21

2 con tích phân trên tuy tại 1 số điểm hàm lấy tích phân ko xác định nhưng người ta chứng minh được là nó ko ảnh hưởng gì đến việc lấy tích phân!
Cứ coi như đây là TH mở rộng đi, cứ làm bình thường ko sao cả!
Love Lan Anh !

#12 xiloxila

xiloxila

    Binh nhất

  • Thành viên
  • 37 Bài viết
  • Giới tính:Nam
  • Đến từ:hcmut

Đã gửi 19-03-2010 - 17:32

2 con tích phân trên tuy tại 1 số điểm hàm lấy tích phân ko xác định nhưng người ta chứng minh được là nó ko ảnh hưởng gì đến việc lấy tích phân!
Cứ coi như đây là TH mở rộng đi, cứ làm bình thường ko sao cả!

thầy em trong khi dạy cũng có nói cái tích phân $\int\limits_{0}^{1} \dfrac{1}{\sqrt{1-x^2}}$ tính được nhưng lại không xác định tại x=1 nhưng vẫn tích được nhưng em chưa hiểu lắm ạ

Bài viết đã được chỉnh sửa nội dung bởi xiloxila: 19-03-2010 - 17:47


#13 dehin

dehin

    Chém gió thần!

  • Thành viên
  • 733 Bài viết
  • Giới tính:Nam
  • Đến từ:Ha Noi
  • Sở thích:Play Đế chế, eat bimbim, đậu phộng and more,...

Đã gửi 19-03-2010 - 18:25

Đặt $ t =sinx $Ta dễ dàng tính được
$ \int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} = \arcsin x + C $
$ \Rightarrow I = \left. {\arcsin x} \right|_0^1 = \dfrac{\pi }{2}$
Mình đọc sách về lịch sử hình thành phép tính tích phân thì được biết:
+) Phép tìm nguyên hàm: Ban đầu nó chỉ được coi là bài toán ngược của phép lấy đạo hàm. Tìm h/s F(x) mà đạo hàm của nó là h/s f(x) biết trước!
Nó ko liên quan gì đến phép tính vi phân cả!
+) Phép tính tích phân: (ra đời trước việc tìm nguyên hàm) xuất phát từ việc tính toán diện tích các hình đặc biệt ( hình thang cong) trong việc đo đac,...
Theo Wikipedia
Những phép tính tích phân đầu tiên đã được thực hiện từ cách đây 2.000 năm bởi Archimedes (287–212 trước Công nguyên), khi ông tính diện tích bề mặt và thể tích khối của một vài hình như hình cầu, hình parabol và hình nón. Phương pháp tính của Archimedes rất hiện đại dù vào thời ấy chưa có khái niệm về đại số, hàm số hay thậm chí cách viết số dạng thập phân.

Tích phân, vi phân và môn toán học của những phép tính này, giải tích, đã chính thức được khám phá bởi Leibniz (1646–1716) và Isaac Newton (1642–1727). Ý tưởng chủ đạo là tích phân và vi phân là hai phép tính nghịch đảo của nhau. Sử dụng mối liên hệ hình thức này, hai nhà toán học đã giải được một số lượng khổng lồ các bài toán quan trọng trong toán học, vật lý và thiên văn học.

J. B. Fourier (1768–1830) khi nghiên cứu sự truyền nhiệt đã tìm ra chuỗi các hàm lượng giác có thể dùng để biểu diễn nhiều hàm số khác. Biến đổi Fourier (biến đổi từ hàm số thành chuỗi các hàm lượng giác và ngược lại) và biến đổi tích phân ngày nay được ứng dụng rất rộng rãi không chỉ trong khoa học cơ bản mà cả trong Y học, âm nhạc và ngôn ngữ học.

Người đầu tiên lập bảng tra cứu các tích phân tính sẵn là Gauss (1777–1855). Ông đã cùng nhiều nhà toán học khác ứng dụng tích phân vào các bài toán của toán học và vật lý. Cauchy (1789–1857) mở rộng tích phân sang cho số phức. Riemann (1826–1866) và Lebesgue (1875–1941) là những người tiên phong đặt nền tảng lô-gíc vững chắc cho định nghĩa của tích phân.

Liouville (1809–1882) xây dựng một phương pháp để tìm xem khi nào tích phân vô định của hàm cơ bản lại là một hàm cơ bản. Hermite (1822–1901) tìm thấy một thuật toán để tính tích phân cho các hàm phân thức. Phương pháp này đã được mở rộng cho các phân thức chứa lô-ga-rít vào những năm 1940 bởi A. M. Ostrowski."

+) Vì vậy ban đầu phép tính phân là ko liên hệ đến việc tìm nguyên hàm. Tích phân có cách tính riêng của nó!
Có 1 số loại tích phân xác định nhưng tích phân xác định ta thường dùng thì được định nghĩa bằng khái niệm tổng tích phân. ( Bài đọc thêm SGK)
Sau này, Niu-tơn và Leibnitz tìm ra CT nổi tiếng.
Nếu hàm số f(x) liên tục trên [a,b] và F(x) là 1 nguyên hàm của f(x) thì:
$ \int\limits_a^b {f(x)dx = \left. {F(x)} \right|_a^b} = F(b) - F(a)$
Đến đây mới người ta mới thấy có một sự liên quan chặt ché giữa nguyên hàm và tích phân.
SGK của chúng ta đã giới thiệu luôn đinh lý này!
Định lý này nói lên: Hàm f(x) liên tục trên [a,b] thì có tích phân xác định trên đó! Nhưng ko có nghĩa là hàm f(x) gián đoạn tại 1 số điểm thì nó ko tồn tại tích phân xác định.
Bởi vì bản chất việc tính TPXD là dựa vào tổng tích phân cơ. CT Niu-tơn- Leibnitz chỉ là 1 CT tương đương thôi!
Vì vậy hàm f(x) có thể gián đoạn tại 1 số hữu hạn điểm nhưng có thể nó vẫn tồn tại TPXD.

Bài viết đã được chỉnh sửa nội dung bởi dehin: 19-03-2010 - 18:42

Love Lan Anh !




2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh