Đến nội dung

Hình ảnh

Bài Đối Xứng Khá Khó

- - - - -

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
supermember

supermember

    Đại úy

  • Hiệp sỹ
  • 1646 Bài viết
Bài Toán :

Cho các số dương $a;b;c$ tuỳ ý , chứng minh rằng , ta luôn có bất đẳng thức :

$ \dfrac{1}{(a^{2}+2bc)(b+c)^{2}}+\dfrac{1}{(b^{2}+2ca)(c+a)^{2}}+\dfrac{1}{(c^{2}+2ab)(a+b)^{2}}\le\dfrac{9}{4(ab+bc+ca)^{2}} $




Nguyễn Kim Anh


Khi bạn là người yêu Toán, hãy chấp nhận rằng bạn sẽ buồn nhiều hơn vui :)

#2
*LinKinPark*

*LinKinPark*

    Trung sĩ

  • Thành viên
  • 146 Bài viết
Đây đây có cu LinKinPark đây :D .....

Lời giải

BĐT cần Cm tương đương:

$\sum {\left( {\dfrac{1}{{{a^2} + 2bc}}} \right){{\left( {\dfrac{{ab + bc + ca}}{{b + c}}} \right)}^2}} \le \dfrac{9}{4}$

$ \Leftrightarrow \sum {\left( {\dfrac{1}{{{a^2} + 2bc}}} \right){{\left( {a + \dfrac{{bc}}{{b + c}}} \right)}^2}} \le \dfrac{9}{4}$

BCS

$\left( {{a^2} + 2bc} \right)\left( {\dfrac{{{a^2}}}{{{a^2} + bc}} + \dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} \right) \ge {\left( {a + \dfrac{{bc}}{{b + c}}} \right)^2}$

$ \Leftrightarrow \left( {\dfrac{1}{{{a^2} + 2bc}}} \right){\left( {a + \dfrac{{bc}}{{b + c}}} \right)^2} \le \left( {\dfrac{{{a^2}}}{{{a^2} + bc}} + \dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} \right)$

Suy ra

$\sum {\left( {\dfrac{1}{{{a^2} + 2bc}}} \right){{\left( {a + \dfrac{{bc}}{{b + c}}} \right)}^2}} \le \sum {\dfrac{{{a^2}}}{{{a^2} + bc}}} + \sum {\dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} $

Cần CM $\sum {\dfrac{{{a^2}}}{{{a^2} + bc}}} + \sum {\dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} \le \dfrac{9}{4}$

$ \Leftrightarrow \sum {\dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} + \dfrac{3}{4} \le \sum {\dfrac{{bc}}{{{a^2} + bc}}} $

Cauchy Schwarz

$\sum {\dfrac{{bc}}{{{a^2} + bc}}} \ge \dfrac{{{{\left( {\sum {ab} } \right)}^2}}}{{abc\left( {\sum a } \right) + \left( {\sum {{{\left( {ab} \right)}^2}} } \right)}}$

Cần CM: $\dfrac{{{{\left( {\sum {ab} } \right)}^2}}}{{abc\left( {\sum a } \right) + \left( {\sum {{{\left( {ab} \right)}^2}} } \right)}} \ge \sum {\dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} + \dfrac{3}{4}$

$ \Leftrightarrow \dfrac{{abc\left( {\sum a } \right)}}{{abc\left( {\sum a } \right) + \left( {\sum {{{\left( {ab} \right)}^2}} } \right)}} + \dfrac{1}{4} \ge \sum {\dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} $

Ta sẽ CM: $\dfrac{{abc\left( {\sum a } \right)}}{{abc\left( {\sum a } \right) + \left( {\sum {{{\left( {ab} \right)}^2}} } \right)}} \ge \dfrac{{4abc}}{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}}$

BĐT trên là thuần nhất nên ta chuẩn hóa cho $a+b+c=1$. Đặt $p = a + b + c,q = ab + bc + ca,r = abc$. BĐT trở thành:

$\dfrac{{pr}}{{{q^2} - pr}} \ge \dfrac{{4r}}{{pq - r}} \Leftrightarrow q\left( {4q - 1} \right) - 3r \le 0$

Với $q \le \dfrac{1}{4}$ done :D

Với $\dfrac{1}{4} < q \le \dfrac{1}{3}$. Sử dụng BĐT Schur $9r \ge 4q - 1$ đưa BĐT trên trở thành:

$12{q^2} - 7q + 1 \le 0$ đúng với $\dfrac{1}{4} < q \le \dfrac{1}{3}$

Bây giờ ta chỉ việc CM

$\dfrac{{4abc}}{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}} + \dfrac{1}{4} \ge \sum {\dfrac{{bc}}{{{{\left( {b + c} \right)}^2}}}} $

$ \Leftrightarrow \sum {{{\left( {a - b} \right)}^2}} \left( {\dfrac{{\left( {c - b} \right)\left( {c - a} \right)}}{{{{\left( {a + b} \right)}^2}\left( {b + c} \right)\left( {c + a} \right)}}} \right) \ge 0$ (Đúng theo Vornicu Schur)

ĐTXR khi va chỉ khi $a=b=c$





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh