Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Khó wá


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Want?

Want?

    My name is Sherlock Holmes

  • Thành viên
  • 77 Bài viết
  • Giới tính:Nam
  • Đến từ:Việt Nam

Đã gửi 30-04-2011 - 10:51

Cho a,b,c>0.
CMR:$\sum{\dfrac{1}{a(b+1)}}\ge \dfrac{3}{\sqrt[3]{abc}(\sqrt[3]{abc}+1)}}$
Đây là chữ ký của tôi!!!

#2 choisiwon

choisiwon

    Binh nhất

  • Thành viên
  • 41 Bài viết

Đã gửi 01-05-2011 - 18:58

Cho a,b,c>0.
CMR:$\sum{\dfrac{1}{a(b+1)}}\ge \dfrac{3}{\sqrt[3]{abc}(\sqrt[3]{abc}+1)}}$

mình thử làm nha:D
đặt $p=\sum_{cyc}\dfrac{1}{a(1+b)}$
áp dung bdt:$(x+y+z)^{2}\geq 3(xy+yz+zx)$
$P^{2}\geq 3( \sum_{cyc}\dfrac{1}{ab(1+b)(1+c)})= \dfrac{3}{abc}-\dfrac{3}{(1+a)(1+b)(1+c)}-\dfrac{1}{abc((1+a)(1+b)(1+c)}$
dặt $t= \sqrt[3]{abc}$ áp dung AM-GM ta có:
$(1+a)(1+b)(1+c) \geq (t+1)^{3}$
$\Rightarrow P^{2}\geq \dfrac{3}{t^{3}}-\dfrac{3}{(t+1)^{3}}-\dfrac{3}{t^{3}(t+1)^{3}}= \dfrac{9}{t^{2}(t+1)^{2}}$
do đó:
$\sum_{cyc}\dfrac{1}{a(1+b)}\geq \dfrac{3}{\sqrt[3]{abc}(\sqrt[3]{abc}+1)}$

#3 Want?

Want?

    My name is Sherlock Holmes

  • Thành viên
  • 77 Bài viết
  • Giới tính:Nam
  • Đến từ:Việt Nam

Đã gửi 02-05-2011 - 12:44

mình thử làm nha:D
đặt $p=\sum_{cyc}\dfrac{1}{a(1+b)}$
áp dung bdt:$(x+y+z)^{2}\geq 3(xy+yz+zx)$
$P^{2}\geq 3( \sum_{cyc}\dfrac{1}{ab(1+b)(1+c)})= \dfrac{3}{abc}-\dfrac{3}{(1+a)(1+b)(1+c)}-\dfrac{1}{abc((1+a)(1+b)(1+c)}$
dặt $t= \sqrt[3]{abc}$ áp dung AM-GM ta có:
$(1+a)(1+b)(1+c) \geq (t+1)^{3}$
$\Rightarrow P^{2}\geq \dfrac{3}{t^{3}}-\dfrac{3}{(t+1)^{3}}-\dfrac{3}{t^{3}(t+1)^{3}}= \dfrac{9}{t^{2}(t+1)^{2}}$
do đó:
$\sum_{cyc}\dfrac{1}{a(1+b)}\geq \dfrac{3}{\sqrt[3]{abc}(\sqrt[3]{abc}+1)}$

nếu $(a+1)(b+1)(c+1)\ge \sqrt[3]{abc}+1$ thì $\sum{\dfrac{1}{a+1}}\le \dfrac{1}{\sqrt[3]{abb}+1}$ mới đúng chứ
Đây là chữ ký của tôi!!!

#4 choisiwon

choisiwon

    Binh nhất

  • Thành viên
  • 41 Bài viết

Đã gửi 02-05-2011 - 22:21

nếu $(a+1)(b+1)(c+1)\ge \sqrt[3]{abc}+1$ thì $\sum{\dfrac{1}{a+1}}\le \dfrac{1}{\sqrt[3]{abb}+1}$ mới đúng chứ

cách khác nak
(đơn giản hơn)
ta có:
$(1+abc)(\sum\dfrac{1}{a(1+b)})+3=\sum\dfrac{1+a}{a(1+b)}+\sum\dfrac{b(c+1)}{1+b}\geq \dfrac{3}{\sqrt[3]{abc}}+3\sqrt[3]{abc}$
==>dpcm




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh