Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 4 Bình chọn

Chuyên đề 4:Hình học mặt phẳng, Hình giải tích.


  • Please log in to reply
Chủ đề này có 60 trả lời

#1 Lê Xuân Trường Giang

Lê Xuân Trường Giang

    Iu HoG mA nhIn ?

  • Thành viên
  • 777 Bài viết
  • Giới tính:Nam
  • Đến từ:HV PTIT
  • Sở thích:Cố gắng hết mình!

Đã gửi 31-05-2011 - 21:31

Chỉ còn vẻn vẹn 1 tháng nữa là các sỹ tử bước vào cuộc thi quan trọng nhất của cuộc đời. Chúng ta đã có 3 chuyên đề về ĐH và đây tôi xin giới thiệu Chuyên đề do tôi: Lê Xuân Trường Giang truclamyentu quản lý.


HÌNH HỌC MẶT PHẲNG - HÌNH GIẢI TÍCH


Trước hết tôi xin post mấy bài mở đầu :

Bài 1: Cho $(d) : x-y=0,M(2;1)$ .Viết pt đường thẳng cắt trục hoành tại $A$, cắt $(d)$ tại $B$ sao cho tam giác $AMB$ vuông cân tại $M$

Bài 2:Cho đường tròn $\left( C \right):{\left( {x - 4} \right)^2} + {y^2} = 25$ và $M(1;-1)$ . Viết pt đường thẳng qua $M$ cắt $\left( C \right)$ tại 2 điểm phân biệt $A;B$ sao cho $MA=3MB$.

Thân !
Tuổi thanh niên đó là ước mơ. Đó là niềm tin. Đó là sự vươn lên tới chiến công. Đó là trữ tình và lãng mạn. Đó là những kế hoạch lớn lao cho tương lai. Đó là mở đầu của tất cả các viễn cảnh
N.HÍCHMÉT




Khó + Lười = Bất lực

#2 anhtuanDQH

anhtuanDQH

    Thượng sĩ

  • Thành viên
  • 236 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:11A1 , THPT Dương Quảng Hàm , Văn Giang , Hưng Yên

Đã gửi 31-05-2011 - 22:49

Chỉ còn vẻn vẹn 1 tháng nữa là các sỹ tử bước vào cuộc thi quan trọng nhất của cuộc đời. Chúng ta đã có 3 chuyên đề về ĐH và đây tôi xin giới thiệu Chuyên đề do tôi: Lê Xuân Trường Giang truclamyentu quản lý.
HÌNH HỌC MẶT PHẲNG - HÌNH GIẢI TÍCH
Trước hết tôi xin post mấy bài mở đầu :

Bài 1: Cho $(d) : x-y=0,M(2;1)$ .Viết pt đường thẳng cắt trục hoành tại $A$, cắt $(d)$ tại $B$ sao cho tam giác $AMB$ vuông cân tại $M$

Bài 2:Cho đường tròn $\left( C \right):{\left( {x - 4} \right)^2} + {y^2} = 25$ và $M(1;-1)$ . Viết pt đường thẳng qua $M$ cắt $\left( C \right)$ tại 2 điểm phân biệt $A;B$ sao cho $MA=3MB$.

Thân !


Goi A (a;0) ; B(b;b) . Ta có :
$\vec{MB} . \vec{MA} =0 \Leftrightarrow (a-2).(b-2) -(b-1)=0 \Leftrightarrow a-2= \dfrac{b-1}{b-2} $ mà MA=MB nên $\ (b-2)^2+(b-1)^2=(a-2)^2+1 \\\Leftrightarrow (b-2)^2+(b-1)^2=(\dfrac{b-1}{b-2} )^2+1\\\Leftrightarrow b=1 ; b=3$
. . . . Xong

Bài viết đã được chỉnh sửa nội dung bởi truclamyentu: 31-05-2011 - 23:03
chỉnh latex

Xăng có thể cạn, lốp có thể mòn..xong số máy số khung thì không bao giờ thay đổi

NGUYỄN ANH TUẤN - CHỦ TỊCH HIỆP HỘI
Hình đã gửi


#3 drogba_95

drogba_95

    Binh nhất

  • Thành viên
  • 26 Bài viết
  • Giới tính:Nam
  • Sở thích:đá bóng,chơi game

Đã gửi 01-06-2011 - 00:36

Bài 2:Cho đường tròn $\left( C \right):{\left( {x - 4} \right)^2} + {y^2} = 25$ và $M(1;-1)$ . Viết pt đường thẳng qua $M$ cắt $\left( C \right)$ tại 2 điểm phân biệt $A;B$ sao cho $MA=3MB$.
I(4;0) R=5
Bạn tự vẽ hình nha! Có MA=3MB$ \Rightarrow $ AB=4MB
IH vuông góc AB nên HA=HB=1/2AB $ \Rightarrow $ HM=MB=1/2HB
Theo Pitago ta có : IH^2+HM^2=IM^2
Và: IH^2+HB^2=IB^2 lại có HB=2HM nên IH^2+4HM^2=IB^2
Giải hệ PT tìm được khoảng cách IH từ đó viết Pt đường thẳng (d) dễ như ăn kẹo còn gì!

$\ MA=3MB \Rightarrow AB=2MB $?????

Chết nhầm!AB =4MB chứ nhỉ!

Hình gửi kèm

  • images4.jpeg
  • images4.jpeg
  • images4.jpeg

File gửi kèm


Bài viết đã được chỉnh sửa nội dung bởi drogba_95: 01-06-2011 - 11:08

Khi bạn sinh ra thì mọi người cười còn bạn khóc. Hãy sống sao để khi bạn chết mọi người khóc còn bạn cười

#4 anhtuanDQH

anhtuanDQH

    Thượng sĩ

  • Thành viên
  • 236 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:11A1 , THPT Dương Quảng Hàm , Văn Giang , Hưng Yên

Đã gửi 01-06-2011 - 06:02

Bài 2:Cho đường tròn $\left( C \right):{\left( {x - 4} \right)^2} + {y^2} = 25$ và $M(1;-1)$ . Viết pt đường thẳng qua $M$ cắt $\left( C \right)$ tại 2 điểm phân biệt $A;B$ sao cho $MA=3MB$.
I(4;0) R=5
Bạn tự vẽ hình nha! Có MA=3MB$ \Rightarrow $ AB=2MB
IH vuông góc AB nên BH=HB=MB
Theo Pitago ta có : IH^2+HB^2=IB^2
và IH^2+HM^2=IM^2 lại có HM=2BH nên IH^2+4BH^2=IM^2
Giải hệ PT tìm được khoảng cách IH từ đó viết Pt đường thẳng (d) dễ như ăn kẹo còn gì!

$\ MA=3MB \Rightarrow AB=2MB $?????

Bài 2:Cho đường tròn $\left( C \right):{\left( {x - 4} \right)^2} + {y^2} = 25$ và $M(1;-1)$ . Viết pt đường thẳng qua $M$ cắt $\left( C \right)$ tại 2 điểm phân biệt $A;B$ sao cho $MA=3MB$.


Bài 2 :

Goi A(a;b) $\Rightarrow \vec{AM} = (1-a;-1-b) $ mà do $\ M\in © $ nên $\vec{AM}=3\vec{MB} \Rightarrow B( \dfrac{4-a}{3} ; \dfrac{-4-b}{3} ) $ . Ta có :

$\left\{\begin{array}{l}(a-4)^2+b^2=25 \\(a+8)^2+(b+4)^2=225\end{array}\right. $ . $\ PT(2)-PT(1) \Rightarrow 3a+b=17 \Rightarrow b=17-3a $ . . . . Xong :-?

Anh Giang post tiếp đề đi

File gửi kèm


Bài viết đã được chỉnh sửa nội dung bởi anhtuanDQH: 01-06-2011 - 10:59

Xăng có thể cạn, lốp có thể mòn..xong số máy số khung thì không bao giờ thay đổi

NGUYỄN ANH TUẤN - CHỦ TỊCH HIỆP HỘI
Hình đã gửi


#5 Bác Ba Phi

Bác Ba Phi

    Hạ Sĩ

  • Thành viên
  • 119 Bài viết
  • Giới tính:Nam
  • Đến từ:Nhà hát của những giấc mơ OLD TRAFFORD
  • Sở thích:đá bóng, nghe nhạc TVXQ!

Đã gửi 01-06-2011 - 17:54

Xin ủng hộ 2 câu Hình phẳng Oxy khá khó:

1) Cho điểm $A(3;0)$ và đường tròn $(C ): (x+3)^2+y^2=100$. Tìm quỹ tích tâm của đường tròn $(C' )$ luôn đi qua $A$ và tiếp xúc $(C )$.

2) Viết Phương trình đường tròn $(C' )$ đi qua gốc tọa độ và cắt đường tròn $ (C ) : (x-2)^2+(y+3)^2=25$ theo một dây cung có độ dài bằng $8$
Hình đã gửi

CHÚC CÁC MEM, MOD CỦA VMF:

SẮP THI ĐẠI HỌC: THI ĐÂU ĐỖ ĐÓ !!!!!

ĐANG HỌC LỚP 8 9 10 11: SANG NĂM MÔN TOÁN 10 PHẨY THÔI!!!

#6 Lê Xuân Trường Giang

Lê Xuân Trường Giang

    Iu HoG mA nhIn ?

  • Thành viên
  • 777 Bài viết
  • Giới tính:Nam
  • Đến từ:HV PTIT
  • Sở thích:Cố gắng hết mình!

Đã gửi 01-06-2011 - 20:32

Xin ủng hộ 2 câu Hình phẳng Oxy khá khó:

1) Cho điểm $A(3;0)$ và đường tròn $(C ): (x+3)^2+y^2=100$. Tìm quỹ tích tâm của đường tròn $(C' )$ luôn đi qua $A$ và tiếp xúc $(C )$.

2) Viết Phương trình đường tròn $(C' )$ đi qua gốc tọa độ và cắt đường tròn $ (C ) : (x-2)^2+(y+3)^2=25$ theo một dây cung có độ dài bằng $8$

Các bạn không nên phân biệt như vậy đây là topic do tôi và truclamyentu quản lý nhưng cũng là tài sản chung nên ai có bài hay thì cứ post thoải mái không nên chờ 1 ai đó post. Rất đáng khen hành động của bạn BacBaPhi

Câu 1:$O\left( { 3;0} \right)$ là tâm của đường tròn $\left( C \right)$
Gọi pt đường tròn qua $A(3;0)$ có dạng $\left( {C'} \right):{x^2} - 2ax + {y^2} - 2by = -9 + 6a$. Với tâm $I'(a;b)$.
Bán kính hai đường tròn lần lượt là $R = 10;R' = \sqrt {-9 + 6a} $.
Ta có $R + R' = \left| {\overrightarrow {OI'} } \right| \Leftrightarrow 10 + \sqrt {-9 + 6a} = \sqrt {{{\left( {a + 3} \right)}^2} + {b^2}} $.
Đến đây có thể kết luận chưa nhỉ ? :-? :-?



Nhân tiện đây nhắc nhở các bài viết quá ngắn sẽ bị xóa, thành viên viết những bài đó sẽ đưa vào danh sách sổ Đen.
Bài của anhtuan DQH có vấn đề mong em xem lại .
Thân !

Bài viết đã được chỉnh sửa nội dung bởi Lê Xuân Trường Giang: 01-06-2011 - 21:24
Nhầm lẫn trong bài làm .

Tuổi thanh niên đó là ước mơ. Đó là niềm tin. Đó là sự vươn lên tới chiến công. Đó là trữ tình và lãng mạn. Đó là những kế hoạch lớn lao cho tương lai. Đó là mở đầu của tất cả các viễn cảnh
N.HÍCHMÉT




Khó + Lười = Bất lực

#7 anhtuanDQH

anhtuanDQH

    Thượng sĩ

  • Thành viên
  • 236 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:11A1 , THPT Dương Quảng Hàm , Văn Giang , Hưng Yên

Đã gửi 01-06-2011 - 21:15

Các bạn không nên phân biệt như vậy đây là topic do tôi và truclamyentu quản lý nhưng cũng là tài sản chung nên ai có bài hay thì cứ post thoải mái không nên chờ 1 ai đó post. Rất đáng khen hành động của bạn BacBaPhi

Câu 1:$O\left( { - 3;0} \right)$ là tâm của đường tròn $\left( C \right)$
Gọi pt đường tròn qua $A(3;0)$ có dạng $\left( {C'} \right):{x^2} - 2ax + {y^2} - 2by = 9 + 6a$. Với tâm $I'(a;b)$.
Bán kính hai đường tròn lần lượt là $R = 10;R' = \sqrt {9 + 6a} $.
Ta có $R + R' = \left| {\overrightarrow {OI'} } \right| \Leftrightarrow 10 + \sqrt {9 + 6a} = \sqrt {{{\left( {a + 3} \right)}^2} + {b^2}} $.
Đến đây có thể kết luận chưa nhỉ ? :-? :D

Thay $\ A(3;0) $ vào$\left( {C'} \right):{x^2} - 2ax + {y^2} - 2by = 9 + 6a$ thì $\ -6a=6a $ không thỏa mãn . . . .

Em làm như sau :

Gọi $\ (C'): (x-a)^2+(y-b)^2=R^2 $ với tâm I' (a;b) và bán kính R .

Do $\ A(3;0) \in (C') \Rightarrow (a-3)^2+b^2=R^2 $

Do $\ ( C ) ; (C') $ tiếp xúc với nhau nên :

$\ II'^2 = (a+3)^2 +b^2 = (R+10)^2 \Rightarrow a= \dfrac{5R+25}{3} \Rightarrow b= \dfrac{4}{3} \sqrt{R^2-6R-16} $

Từ đây , ta có : a, b thỏa mãn hyperbol :

$\dfrac{(3a-8)^2}{25^2} - \dfrac{(3b)^2}{20^2} =1 $

Trong lúc trình bày có chỗ nào sơ suất , em xin được mọi người lượng thứ . . . . :-? :)

Xăng có thể cạn, lốp có thể mòn..xong số máy số khung thì không bao giờ thay đổi

NGUYỄN ANH TUẤN - CHỦ TỊCH HIỆP HỘI
Hình đã gửi


#8 anhtuanDQH

anhtuanDQH

    Thượng sĩ

  • Thành viên
  • 236 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:11A1 , THPT Dương Quảng Hàm , Văn Giang , Hưng Yên

Đã gửi 01-06-2011 - 21:27

Topic lập ra được mấy ngày rồi nhưng xem ra mọi người không có hứng thú gì lắm thì phải , để làm không khí trở lên sôi động hơn , em xin đổi tông sang phần elip nha :

Câu 5 : Cho $\ ( E ) : \dfrac{x^2}{9} + \dfrac{y^2}{4} =1 $ và I ( 1;1 )

a) CMR: Với mọi đường thẳng đi qua I đều cắt (E) tại 2 điểm phân biệt .

b) viết phương trình đường thẳng qua I cắt ( E ) tại 2 điểm phân biệt A , B sao cho tích $\ IA.IB $ đạt max , min .

c) Gọi (d) , (d') là 2 đường thẳng vuông góc cắt nhau tại I cắt (E) tại A,B và A',B' . CMR:

$\dfrac{1}{IA.IB} + \dfrac{1}{IA'.IB'} $ có tích không đổi khi điểm I thay đổi trong (E) .

Câu 6 : Cho $\ ( E ) : \dfrac{x^2}{9} + \dfrac{y^2}{4} =1 ; ( \delta ) : 3x-4y+2=0 $

Tìm trên (E) điểm M sao cho khoảng cách từ M đến $\ ( \delta ) $ max .

Bài viết đã được chỉnh sửa nội dung bởi anhtuanDQH: 01-06-2011 - 21:33

Xăng có thể cạn, lốp có thể mòn..xong số máy số khung thì không bao giờ thay đổi

NGUYỄN ANH TUẤN - CHỦ TỊCH HIỆP HỘI
Hình đã gửi


#9 Bác Ba Phi

Bác Ba Phi

    Hạ Sĩ

  • Thành viên
  • 119 Bài viết
  • Giới tính:Nam
  • Đến từ:Nhà hát của những giấc mơ OLD TRAFFORD
  • Sở thích:đá bóng, nghe nhạc TVXQ!

Đã gửi 05-06-2011 - 20:27

Chỉ còn vẻn vẹn 1 tháng nữa là các sỹ tử bước vào cuộc thi quan trọng nhất của cuộc đời. Chúng ta đã có 3 chuyên đề về ĐH và đây tôi xin giới thiệu Chuyên đề do tôi: Lê Xuân Trường Giang truclamyentu quản lý.
HÌNH HỌC MẶT PHẲNG - HÌNH GIẢI TÍCH
Thân !


anhtuanQHD ơi, chắc tại tui gà nhưng thực tế là toán cônic khá khó, ôn thời gian ngắn ít zô lắm.
Mình xin thêm 1 câu quen thuộc:


Trong hệ phẳng Oxy, cho Parabol $(P ): y^2=64x$ và đường thẳng $(\Delta): 4x-3y+46=0$.
Viết PT đường tròn có bán kính nhỏ nhất mà tâm nằm trên $\Delta$và tiếp xúc với parabol $(P )$
.

Bài viết đã được chỉnh sửa nội dung bởi Bác Ba Phi: 05-06-2011 - 20:31

Hình đã gửi

CHÚC CÁC MEM, MOD CỦA VMF:

SẮP THI ĐẠI HỌC: THI ĐÂU ĐỖ ĐÓ !!!!!

ĐANG HỌC LỚP 8 9 10 11: SANG NĂM MÔN TOÁN 10 PHẨY THÔI!!!

#10 E. Galois

E. Galois

    Chú lùn thứ 8

  • Quản trị
  • 3817 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Toán và thơ

Đã gửi 07-06-2011 - 23:18

Tặng các bạn 1 bài khá hay

Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình d1: x + y + 1 = 0. Phương trình đường cao vẽ từ B là d2: x – 2y – 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

1) Xem cách đăng bài tại đây
2) Học gõ công thức toán tại: http://diendantoanho...oạn-thảo-latex/
3) Xin đừng đặt tiêu đề gây nhiễu: "Một bài hay", "... đây", "giúp tớ với", "cần gấp", ...
4) Ghé thăm tôi tại 
http://Chúlùnthứ8.vn

5) Xin đừng hỏi bài hay nhờ tôi giải toán. Tôi cực gà.


#11 caubeyeutoan2302

caubeyeutoan2302

    Nhà dược sĩ mê toán

  • Thành viên
  • 305 Bài viết
  • Giới tính:Nam
  • Đến từ:Khối B-CS. LHP High school for the gifted _Ho chi minh city
  • Sở thích:Làm toán , nghe nhạc nữa , thích chém gió và đặc biệt là vô cùng yêu ngôi trường Lũ Heo Phì For The Gifted của mình , hehe :))

Đã gửi 09-06-2011 - 13:41

Anh Giang và truclamyentu lập ra topic ôn tập này hay thế, vừa để các anh chị lớp 12 luyện thi vừa để bọn lớp 10 và 11 tụi em trau dồi để đạt 10 phẩy ( theo lời Bác Ba Phi) :neq
Em xin chém trước bài của anh Galois nhé : Trong mp Oxy, cho tam giác ABC cân, cạnh đáy BC d1: x+y+1=0. Phương trình đường cao vẽ từ B là d2: x-2y-2=0. Điểm M(2;1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác .
Giải : Ta có pt BC(d1)x+y+1=0 và pt đường cao từ B(d2)x-2y-2=0, pt đường cao từ C(d3)
Ta có điểm M(2;1) thuộc (d3) nên pt hệ số góc là :y-1=k(x-2) hay kx-y+1-2k=0(d3)
Kí hiệu cos(A;B) là cos của góc hợp giữa đường thẳng A và B. Do tam giác ABC cân tại A và cả 3 góc đều là góc nhọn nên ta có :
$cos(d_2;d_1)=cos(d_3;d_1) \\ \Leftrightarrow \dfrac{{\left| {1 - 2} \right|}}{{\sqrt {1^2 + 1^2 } \sqrt {1^2 + 2^2 } }} = \dfrac{{\left| {k - 1} \right|}}{{\sqrt {1^2 + 1^2 } \sqrt {k^2 + 1^2 } }} \\ \Leftrightarrow 5(k-1)^2=k^2 +1 \\ \Leftrightarrow 4k^2 -10k +4=0 \\ \Leftrightarrow k=2 hay k=\dfrac{1}{2}$
Xét k=1/2 ta có pt(d3) là x-2y=0( loại do (d3) song song (d2)x-2y-2=0). Xét k=2 ta có pt(d3):2x-y-3=0(nhận)
Từ đó tính được B(0;-1) và C(2/3;-5/3). Do đó ta tìm được phương trình AB:x+2y+2=0 và phương trình AC: 6x+3y+1=0.
Nếu ai có cách hay hơn thì em xin thọ giáo . Để kết thúc bài viết em xin post lên 1 bài khá hay cho topic thêm phong phú :
Trong mp Oxy, cho A(1;1) . Hãy tìm tọa độ điểm B trên đường thẳng y=3 và điểm C trên trục hoành sao cho tam giác ABC là tam giác đều . :delta
CỐ GẮNG THÀNH SINH VIÊN ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH

#12 hangochoanthien

hangochoanthien

    * ĐÔNG TÀ*

  • Thành viên
  • 165 Bài viết
  • Giới tính:Nam
  • Đến từ:Đảo Đào Hoa
  • Sở thích:thích học toán ,lí .hóa và thích chơi cho Barcelona.........

Đã gửi 17-06-2011 - 23:07

Em xin ủng hộ một bài hình hoc phẳng đê các anh tham khảo ,chúc các anh thi tốt.....
than!
Cho (E) : $ \dfrac{x^2}{a^2} + \dfrac{y^2}{b ^2}$ .Có 2 đỉnh trên trục hoành là A1 và A2.M chạy trên (E).CMR trực tâm H của MA1A2 chạy trên 1 elip.VPT elip đó.

#13 hangochoanthien

hangochoanthien

    * ĐÔNG TÀ*

  • Thành viên
  • 165 Bài viết
  • Giới tính:Nam
  • Đến từ:Đảo Đào Hoa
  • Sở thích:thích học toán ,lí .hóa và thích chơi cho Barcelona.........

Đã gửi 17-06-2011 - 23:59

Để cảm ơn anh truclamyentu em xin post thêm 1 bài hình học phẳng nữa ,không biết có trùng topic nào không
Đây
Cho (E) :$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} (a>b>0)$
Hai điểm A,B chuyển động trên (E) sao cho $ góc{AOB}$ = 90 độ.Gọi H là hình chiếu của O trên đường thẳng
AB. CMR H nằm trên một đường tròn cố định .Vpt đường tròn đó.......
Mọi người hãy vào đây ủng hộ topic của anh truclamyentu nha .......... :lol: :lol:...

#14 khanh3570883

khanh3570883

    Trung úy

  • Thành viên
  • 905 Bài viết
  • Giới tính:Nam
  • Đến từ:Địa ngục

Đã gửi 18-06-2011 - 16:06

anhtuanQHD ơi, chắc tại tui gà nhưng thực tế là toán cônic khá khó, ôn thời gian ngắn ít zô lắm.
Mình xin thêm 1 câu quen thuộc:
Trong hệ phẳng Oxy, cho Parabol $(P ): y^2=64x$ và đường thẳng $(\Delta): 4x-3y+46=0$.
Viết PT đường tròn có bán kính nhỏ nhất mà tâm nằm trên $\Delta$và tiếp xúc với parabol $(P )$
.

Hình như (P) và :( cắt nhau thì phải, cắt nhau thì làm gì có đường tròn nào có bán kính nhỏ nhất nằm trên :leq và tiếp xúc (P) được nhỉ

THẬT THÀ THẲNG THẮN THƯỜNG THUA THIỆT

LƯƠN LẸO LUỒN LỎI LẠI LEO LÊN

 

Một ngày nào đó ta sẽ trở lại và lợi hại hơn xưa


#15 caubeyeutoan2302

caubeyeutoan2302

    Nhà dược sĩ mê toán

  • Thành viên
  • 305 Bài viết
  • Giới tính:Nam
  • Đến từ:Khối B-CS. LHP High school for the gifted _Ho chi minh city
  • Sở thích:Làm toán , nghe nhạc nữa , thích chém gió và đặc biệt là vô cùng yêu ngôi trường Lũ Heo Phì For The Gifted của mình , hehe :))

Đã gửi 18-06-2011 - 20:55

Em xin góp vài bài cực trị khá hay để topic thêm phong phú nhé:
Bài 1:Trong hệ trục tọa độ Đề các vuông góc cho (E) có phương trình $ x^2+4y^2=4$ và điểm A(3;2) . Một đường thẳng đi qua tâm đối xứng của (E) cắt nó tại 2 điểm P và Q. Hãy xác định vị trí của đường thằng PQ sao cho $ AP^2+AQ^2$ đạt min
Bài 2: Cho (E) $\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$. Các điểm M,N lần lượt di chuyển trên các tia Ox,Oy sao cho MN luôn tiếp xúc với (E). Xác định tọa độ M,N để đoạn MN đạt min. Tính min đó :(
CỐ GẮNG THÀNH SINH VIÊN ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH

#16 Want?

Want?

    My name is Sherlock Holmes

  • Thành viên
  • 77 Bài viết
  • Giới tính:Nam
  • Đến từ:Việt Nam

Đã gửi 19-06-2011 - 16:50

Có thể nói topic rất dược ưu ái nhỉ :(
mình xin đóng góp 1 bài
cho e-lip $(E)$: $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ CMR tiếp tuyến với $(E)$ có pt $Ax+By+C=0$ thì A,B.C thỏa $A^2a^2+B^2b^2=C^2$.
Tiện cho mì hỏi luôn cách cm đổi đồ thị của Trần Phương có thực sự đúng k?
Đây là chữ ký của tôi!!!

#17 Hoanght

Hoanght

    Hạ sĩ

  • Thành viên
  • 65 Bài viết
  • Giới tính:Nam
  • Đến từ:Can Lộc - Hà Tĩnh

Đã gửi 30-03-2012 - 20:02

Sao hông có bài nào trong Oxyz nhỉ?
Đề bài Trong không gian Oxyz, cho đường thẳng d: $\frac{x}{1}=\frac{y-1}{-1}=\frac{z}{2}$ và điểm $A\left ( 0;1;2 \right )$. Viết phương trình mặt cầu có tâm thuộc đường thẳng d, đi qua điểm A và tiếp xúc với mặt phẳng Oxy.

Bài viết đã được chỉnh sửa nội dung bởi Hoanght: 30-03-2012 - 20:03


#18 T M

T M

    Trung úy

  • Thành viên
  • 926 Bài viết
  • Giới tính:Nam
  • Đến từ:$\infty$

Đã gửi 07-04-2012 - 18:00

Sao hông có bài nào trong Oxyz nhỉ?
Đề bài Trong không gian Oxyz, cho đường thẳng d: $\frac{x}{1}=\frac{y-1}{-1}=\frac{z}{2}$ và điểm $A\left ( 0;1;2 \right )$. Viết phương trình mặt cầu có tâm thuộc đường thẳng d, đi qua điểm A và tiếp xúc với mặt phẳng Oxy.


Bạn lưu ý đây là nơi dành cho "Hình học mặt phẳng,hình giải tích".
ĐCG !

#19 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2938 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 28-04-2012 - 02:39

1.Trong mặt phẳng $Oxy$, cho hình bình hành $ABCD$ có $A(2; 1)$, đường chéo $BD$ có phương trình $x + 2y + 1 = 0$. Điểm $M$ nằm trên đường thẳng $AD$ sao cho $AM = AC$. Đường thẳng $MC$ có phương trình $x + y – 1 = 0$. Tìm tọa độ các đỉnh còn lại của hình bình hành $ABCD$.
Trích câu 6a đề thi thử ĐH Trung Giã

2. Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S) : x^2 + y^2 + z^2–4x–4y– 4z=0$ và điểm $A (4; 4; 0)$. Viết phương trình mặt phẳng $(OAB)$, biết điểm $B$ thuộc $(S)$ và tam giác $OAB$ đều.
P/S MOD nào rảnh gõ lại số thứ tự dùm

Bài viết đã được chỉnh sửa nội dung bởi Ispectorgadget: 28-04-2012 - 02:42

►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết

#20 T M

T M

    Trung úy

  • Thành viên
  • 926 Bài viết
  • Giới tính:Nam
  • Đến từ:$\infty$

Đã gửi 29-04-2012 - 21:03

1.Trong mặt phẳng $Oxy$, cho hình bình hành $ABCD$ có $A(2; 1)$, đường chéo $BD$ có phương trình $x + 2y + 1 = 0$. Điểm $M$ nằm trên đường thẳng $AD$ sao cho $AM = AC$. Đường thẳng $MC$ có phương trình $x + y – 1 = 0$. Tìm tọa độ các đỉnh còn lại của hình bình hành $ABCD$.
Trích câu 6a đề thi thử ĐH Trung Giã

2. Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S) : x^2 + y^2 + z^2–4x–4y– 4z=0$ và điểm $A (4; 4; 0)$. Viết phương trình mặt phẳng $(OAB)$, biết điểm $B$ thuộc $(S)$ và tam giác $OAB$ đều.
P/S MOD nào rảnh gõ lại số thứ tự dùm



Bài 1 Mình có hướng giải thế này

Trước hết từ đề bài ta có

$A(2;1)$
$\Delta_{BD}:x+2y+1=0.$
$\Delta_{MC}:x+y-1=0$
$AM=AC$

Từ $A$ ta hạ $AH$ vuông góc với $\Delta_{MC}$ dễ dàng có được toạ độ điểm $H(1;0)$.

Vì $C \in \Delta_{MC}$ nên $C(x;1-x)$.

Vì tam giác $AMC$ cân nên $H$ là trung điểm của $MC$

$\Rightarrow M(2-x;y-1)$ mà $AM=AC$ nên

$x^2+(y-2)^2=(x-2)^2+y^2$
$x+y=1$.


Từ đây tìm ra toạ độ $C$. Tìm được toạ độ $C$ thì việc tìm toạ độ các điểm còn lại của hình bình hành là quá đơn giản.

P\S: Ai có đáp án chuẩn của đề này không cho mình xin!

Bài viết đã được chỉnh sửa nội dung bởi luxubuhl: 30-04-2012 - 14:09

ĐCG !




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh