Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng nếu trong dãy các số thu được có chứa số $1001$ thì không có số nào trong các số của dãy là số nguyên tố .


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 caubeyeutoan2302

caubeyeutoan2302

    Nhà dược sĩ mê toán

  • Thành viên
  • 305 Bài viết
  • Giới tính:Nam
  • Đến từ:Khối B-CS. LHP High school for the gifted _Ho chi minh city
  • Sở thích:Làm toán , nghe nhạc nữa , thích chém gió và đặc biệt là vô cùng yêu ngôi trường Lũ Heo Phì For The Gifted của mình , hehe :))

Đã gửi 15-08-2011 - 10:37

Bài toán :

Ta bắt đầu với một số nguyên dương nào đấy , số này được tác động bởi $2$ toán tử sau đây : Tách chữ số hàng đơn vị của nó rồi đem nhân chữ số này cho $4$, đem tích cộng với phần còn lại của số đã cho ( Ví dụ : $1997$ biến thành : $7*4+199=227$) . Thực hiện lặp đi lặp lại toán tử này . Chứng minh rằng nếu trong dãy các số thu được có chứa số $1001$ thì không có số nào trong các số của dãy là số nguyên tố .


CỐ GẮNG THÀNH SINH VIÊN ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH

#2 ffyyytt

ffyyytt

    Binh nhì

  • Thành viên
  • 14 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Hoàng Lê Kha, Tây Ninh
  • Sở thích:Toán, Hóa

Đã gửi 23-09-2015 - 02:13

Bài toán :

Ta bắt đầu với một số nguyên dương nào đấy , số này được tác động bởi $2$ toán tử sau đây : Tách chữ số hàng đơn vị của nó rồi đem nhân chữ số này cho $4$, đem tích cộng với phần còn lại của số đã cho ( Ví dụ : $1997$ biến thành : $7*4+199=227$) . Thực hiện lặp đi lặp lại toán tử này . Chứng minh rằng nếu trong dãy các số thu được có chứa số $1001$ thì không có số nào trong các số của dãy là số nguyên tố .

Xét những số nhận được trước số 1001 trong dãy, Ta có

     gọi: $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$ là số nhận được liền trước 1001  (0 $\leq $ $a_{1};a_{2};...;a_{n} $ $\leq$ 9 ,  $a_{1};a_{2}...a_{n}$ $\in $  $\mathbb{N}$ )  

        =>   $\bar{a_{1}a_{2}...a_{n-1}}$ + 4.$a_{n}$ = 1001                           

      <=>   10.$\bar{a_{1}a_{2}...a_{n-1}}$ + 40.$a_{n}$ = 10010

      <=>   $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$ + 39.$a_{n}$ = 10010                                                                                                   (1)

  mà 10010 $\vdots$ 13                                                                                                                                                  (2)

         39 $\vdots$  13   =>  39.$a_{n}$  $\vdots$  13                                                                                                                          (3)

 Từ (1),(2) và (3) =>  $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$ $\vdots$ 13                                                                                                      (4)

       nếu   $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$ $\leq$   1001 => 39.$a_{n}$  $\geq$ 10010-1001 <=> $a_{n}$ $\geq$  231 (vô lý)

            =>    $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$ $>$   1001  $>$    13                                                                                              (5)

  Từ (4),(5) =>  $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$  không là số nguyên tố

    gọi: $\bar{b_{1}b_{2}...b_{k-1}b_{k}}$ là số nhận được liền trước $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$        (0 $\leq $ $b_{1};b_{2};...;b_{n} $ $\leq$ 9 ,  $b_{1};b_{2}...b_{n}$ $\in $  $\mathbb{N}$ )   

       => $\bar{b_{1}b_{2}...b_{k-1}}$ + 4.$b_{k}$  =   $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$

      <=> 10. $\bar{b_{1}b_{2}...b_{k-1}}$ + 40.$b_{k}$ = 10.$\bar{a_{1}a_{2}...a_{n-1}a_{n}}$

      <=> $\bar{b_{1}b_{2}...b_{k-1}b_{k}} + 39.b_{k}$ = 10.$\bar{a_{1}a_{2}...a_{n-1}a_{n}}$                                                                                  (7)

 mà $\bar{a_{1}a_{2}...a_{n-1}a_{n}}$ $\vdots$  13 (cmt) => 10.$\bar{a_{1}a_{2}...a_{n-1}a_{n}}$   $\vdots$   13                                                                     (8)

        39  $\vdots$  13  => 39.b_{k}  $\vdots$  13                                                                                                                           (9)

   Từ (7),(8) và (9) => $\bar{b_{1}b_{2}...b_{k-1}b_{k}}$   $\vdots$  13                                                                                                       (10)

  c/m tương tự c/m (5) ta được   $\bar{b_{1}b_{2}...b_{k-1}b_{k}}$   $>$ 1001 $>$ 13                                                                    (11) 

 Từ (10) và (11) => $\bar{b_{1}b_{2}...b_{k-1}b_{k}}$  không là số nguyên tố

C/m tương tự trên ta được: những số nhận trước 1001 trong dãy đều không là số nguyên tố                                                                (*)

Xét những số nhận được sau 1001 trong dãy, Ta có:     

  1.4 + 100 = 104= 23.13   _ không là số nguyên tố

  4.4 + 10 = 26 = 2.13     _ không là số nguyên tố                                                              

  6.4 + 2   = 26 = 2.13   _ không là số nguyên tố 

 tiếp tục ta vẫn nhận được số 26

Vậy những số nhận sau 1001 trong dãy không là số nguyên tố                                                                                                               (**)

Ta có: 1001= 7.11.13 _ không là số nguyên tố                                                                                                                                        (***)

Từ (*),(**),(***) suy ra đpcm.


Bài viết đã được chỉnh sửa nội dung bởi ffyyytt: 23-09-2015 - 11:17


#3 QDV

QDV

    Trung sĩ

  • Thành viên
  • 131 Bài viết

Đã gửi 02-10-2015 - 07:50

Xét dãy được tạo theo các toán tử trên $a_{0},a_{1},...,a_{n}$. Tacó

$a_{k}=\frac{a_{k-1}-b_{k-1}}{10}+4b_{k-1}$  (1).Trong đó $b_{k-1}$là chữ số tận cùng của $a_{k-1}

Từ (1) $\Rightarrow 10a_{k}=a_{k-1}+39b_{k-1}$ (2)

Vì 39 chia hết cho 13 cho nên từ (2) $a_{k}\vdots 13 \Leftrightarrow a_{k-1}\vdots 13$ (3)

Vậy theo(3) nếu trong daỹ tồn tại một số chia hết cho 13 thì tất cả các các số của daỹ đều chia hết cho 13. Theo đề bài trong daỹ có chứa số 1001 chia hết cho 13 nên toàn bộ các số của daỹ đều chia hết cho 13 (Đpcm)






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh