Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 8 Bình chọn

Topic trao đổi bài

alex_hoang và h.vuong_pdl

  • Please log in to reply
Chủ đề này có 120 trả lời

#61 Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế

Đã gửi 26-12-2011 - 18:25

Topic này đang bị bỏ quên... Mọi người cùng thảo luận bài này.

Bài 22: Tính tích phân bất định: $$\int \dfrac{x^{4}-2x^{2}}{\left ( x^{2}sinx+2xcosx-2sinx \right )\left ( x^{2}cosx-2xsinx-2cosx \right )}$$

#62 Tham Lang

Tham Lang

    Thượng úy

  • Thành viên
  • 1149 Bài viết
  • Giới tính:Nam
  • Sở thích:Tự kỉ ^^

Đã gửi 18-02-2012 - 23:09

Em đang có một bài chưa giải được, mong mọi người chỉ giáo. Và cũng mong mọi người hãy quan tâm đến topic này nhiều hơn, vì đây là nơi giao lưu tôt nhất của diễn đàn.
Bài toán : Cho $a, b, c \ge 0, a^2 + b^2 + c^2 =a + b + c$. Tìm GTLN của $P = a^3 + b^3 + c^3$

Bài viết đã được chỉnh sửa nội dung bởi huymit_95: 18-02-2012 - 23:10

Off vĩnh viễn ! Không ngày trở lại.......


#63 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 19-02-2012 - 09:10

Em đang có một bài chưa giải được, mong mọi người chỉ giáo. Và cũng mong mọi người hãy quan tâm đến topic này nhiều hơn, vì đây là nơi giao lưu tôt nhất của diễn đàn.
Bài toán : Cho $a, b, c \ge 0, a^2 + b^2 + c^2 =a + b + c$. Tìm GTLN của $P = a^3 + b^3 + c^3$

Theo BĐT Cauchy-Schwarz:
$$(a^2+b^2+c^2)^2=(a+b+c)^2 \le 3(a^2+b^2+c^2) \Rightarrow a^2+b^2+c^2 \le 3$$
Vẫn sử dụng BĐT Cauchy-Schwarz,ta có:
$$(a+b+c)(a^3+b^3+c^3) \le (a^2+b^2+c^2)^2 \iff P \le a^2+b^2+c^2 \le 3$$
$$P_{\max}=3 \iff a=b=c=1$$.
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#64 Tham Lang

Tham Lang

    Thượng úy

  • Thành viên
  • 1149 Bài viết
  • Giới tính:Nam
  • Sở thích:Tự kỉ ^^

Đã gửi 19-02-2012 - 09:12

Theo BĐT Cauchy-Schwarz:
$$(a^2+b^2+c^2)^2=(a+b+c)^2 \le 3(a^2+b^2+c^2) \Rightarrow a^2+b^2+c^2 \le 3$$
Vẫn sử dụng BĐT Cauchy-Schwarz,ta có:
$$(a+b+c)(a^3+b^3+c^3) \le (a^2+b^2+c^2)^2 \iff P \le a^2+b^2+c^2 \le 3$$
$$P_{\max}=3 \iff a=b=c=1$$.

Anh ơi, hình như cái này anh làm ngược dấu rồi. :icon6:
Cái khó ở bài này là việc sử dụng như trên rất khó để có kết quả, em nghĩ phải phân tích rất lắt léo mới tìm dc.

Bài viết đã được chỉnh sửa nội dung bởi huymit_95: 19-02-2012 - 09:13

Off vĩnh viễn ! Không ngày trở lại.......


#65 le_hoang1995

le_hoang1995

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Vân Nội

Đã gửi 09-03-2012 - 06:35

Em đang học đến Lim, có bài này nghĩ ra cách rồi mà lằng nhằng quá, muốn tìm thêm cách khác, post lên đây nhờ các anh chị giải quyết giúp.

Bài 24: Tính:

a) $\lim_{x\rightarrow 0}\frac{(1+mx)^n-(1+nx)^m}{x^2}$

b) $\lim_{x\rightarrow 1}\frac{m}{1-x^m}-\frac{n}{1-x^n}$

c) $\lim_{x\rightarrow 0}(1+sin3x)^{\frac{1}{x}}$

Bài viết đã được chỉnh sửa nội dung bởi le_hoang1995: 10-03-2012 - 02:35


#66 Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế

Đã gửi 09-03-2012 - 09:02

a. b. http://diendantoanho...ndpost&p=288489

c. $$\mathop {\lim }\limits_{x \to 0} {\left( {1 + \sin 3x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{x \to 0} {\left( {1 + \sin 3x} \right)^{\frac{1}{{\sin 3x}}.\frac{{\sin 3x}}{{3x}}.3}} = {e^3}$$

$$\text{do}\,\,\,\left\{ \begin{gathered}
\mathop {\lim }\limits_{x \to 0} {\left( {1 + \sin 3x} \right)^{\frac{1}{{\sin 3x}}}} = e \\
\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{3x}} = 1\\
\end{gathered} \right.$$

Bài viết đã được chỉnh sửa nội dung bởi xusinst: 09-03-2012 - 09:03


#67 le_hoang1995

le_hoang1995

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Vân Nội

Đã gửi 10-03-2012 - 02:28

Câu b em cũng làm giống như vậy. Còn đây là câu a.

$\lim_{x\rightarrow 0}\frac{(1+mx)^n-(1+nx)^m}{x^2}$

Theo nhị thức Niu tơn ta có
$(1+mx)^n-(1+nx)^m=\sum C_{n}^{k}(mx)^k-\sum C_{n}^{k}(nx)^k=[1+mnx+\sum_{k=2}^{n}C_{n}^{k}(mx)^k]-[1+mnx+\sum_{k=2}^{m}C_{m}^k(nx)^k]$

$=x^2[\sum_{k=2}^{n}C_{n}^{k}m^kx^{k-2}-\sum_{k=2}^{n}C_{m}^{k}n^kx^{k-2}]$

Như vậy $\lim_{x\rightarrow 0}f(x)=\lim_{x\rightarrow 0}[\sum_{k=2}^{n}C_{n}^{k}m^kx^{k-2}-\sum_{k=2}^{n}C_{m}^{k}m^kx^{k-2}]=C_{n}^{2}m^2-C_{m}^{2}n^2$

Câu c hóa ra chưa học giới hạn e.

Tiếp tục.

Bài 25. Tính

$A=1.1!+2.2!+3.3!+...+n.n!$

$B=(1^2+1+1).1!+(2^2+2+1).2!+...+(n^2+n+1).n!$

Mấy câu này em muốn tính trực tiếp nhưng không ra, dùng Maple để tính rồi quy nạp thì không hay cho lắm :(

Bài 26. chứng minh rằng:

$1^3+2^3+3^3+...+n^3=6(C_{3}^{3}+C_{4}^{3}+C_{5}^{3}+...+C_{n+1}^{3})+C_{n+1}^{2}$

Bài 27.Cho các số nguyên dương m,n. Chứng minh rằng $\frac{(m.n)!}{(m!)^n.n!}$ là một số nguyên.

Bài 28. cho số $A=2000.2001.2002$. Tìm số các ước số của A không chia hết cho 1001.

Bài 29. Cho a là số thực thỏa mãn
$f(x)=\frac{2008}{2009}cosx+\frac{2011}{2008}cos(x-a)+1\geq 0,\forall x\in R$

Chứng minh rằng $f(x)\leq 3,\forall x\in R$

Bài viết đã được chỉnh sửa nội dung bởi le_hoang1995: 14-03-2012 - 17:08


#68 Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế

Đã gửi 12-03-2012 - 15:31

Các bạn thử làm bài này.

Bài 30. Kí hiệu $a * b = ab + a + b\,\,\left( {\forall a,b \in \mathbb{N}} \right)$. Tính $1 * \left( {2 * \left( {3 * \left( {4 * ...\left( {99 * 100} \right)...} \right)} \right)} \right)$

#69 le_hoang1995

le_hoang1995

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Vân Nội

Đã gửi 13-03-2012 - 06:40

Sao không ai làm vậy, mình làm trước bài 25.

Ta có $k.k!=(k+1).k!-k!=(k+1)!-k!=f(k+1)-f(k)$ trong đó $f(k)=k!$

Như vậy $S_1=f(2)-f(1)+f(3)-f(2)+f(4)-f(3)+...+f(n+1)-f(n)=f(n+1)-f(1)=(n+1)!-1$

b) Ta có $(k^2+k+1).k!=(k^2+2k+1).k!-k.k!=(k+1)^2.k!-k.k!=(k+1).(k+1)!-k.k! =g(k+1)-g(k)$

Tương tự câu a $S_2=g(2)-g(1)+g(3)-g(2)+...+g(n+1)-g(n)=g(n+1)-g(1)=(n+1).(n+1)!-1$.

#70 le_hoang1995

le_hoang1995

    Sĩ quan

  • Thành viên
  • 314 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Vân Nội

Đã gửi 15-03-2012 - 19:20

Em làm tiếp bài 26, một cách không hay lắm, nhưng chưa nghĩ ra cách khác được.

Bước 1 chứng minh bằng quy nạp toán học rằng

$1^3+2^3+3^3+...+n^3=\frac{n^2.(n+1)^2}{4}$. Cái này không khó lắm.

Bước 2, chứng minh:

$C_{3}^{3}+C_{4}^{3}+C_{5}^{3}+...+C_{n+1}^{3}=C_{n+2}^{4}$

Xét $f(x)=(x+1)^3+(x+1)^4+...+(x+1)^{n+1}=\frac{(x+1)^3.[(x+1)^{n-1}-1}{(x+1)-1}=\frac{(x+1)^{n+2}-(x+1)^3}{x}$ (cấp số nhân)

Cân bằng hệ số tương ứng của $x^3$ trong 2 vế, suy ra

$C_{3}^{3}+C_{4}^{3}+C_{5}^{3}+...+C_{n+1}^{3}=C_{n+2}^{4}$

Bước 3.

Rút gọn lại biểu thức, ta cần chứng minh:

$\frac{n^2.(n+1)^2}{4}=6C_{n+2}^{4}+C_{n+1}^{2}$

$6C_{n+2}^{4}+C_{n+1}^{2}=6\frac{(n+2).(n+1).n.(n-1)}{4!}+\frac{(n+1).n}{2!}$

$6C_{n+2}^{4}+C_{n+1}^{2}=\frac{(n+2).(n+1).n.(n-1)}{4}+\frac{(n+1).n}{2}$

$=\frac{n.(n+1)}{2}.[\frac{(n+2).(n-1)}{2}+1]=\frac{n^2.(n+1)^2}{4}$

Suy ra ĐPCM.

Các bài còn lại em vẫn chưa có lời giải, mong mọi người chỉ giáo :lol:

Bài viết đã được chỉnh sửa nội dung bởi le_hoang1995: 18-04-2012 - 08:05


#71 tieulyly1995

tieulyly1995

    Sĩ quan

  • Thành viên
  • 435 Bài viết
  • Giới tính:Nữ

Đã gửi 15-03-2012 - 22:40

Các bạn thử làm bài này.

Bài 30. Kí hiệu $a * b = ab + a + b\,\,\left( {\forall a,b \in \mathbb{N}} \right)$. Tính $1 * \left( {2 * \left( {3 * \left( {4 * ...\left( {99 * 100} \right)...} \right)} \right)} \right)$

Ta có :
$a*b= ab+a+b= (a+1)(b+1)-1$ Do đó :
$P_{99}= 99*100= 100.101 -1$
$P_{98}= 98* P_{99}= 99.100.101 -1$
$P_{97}= 97* P_{98}= 98.99.100.101 -1$
......................
$P_{1}= 1* P_{2}= 2.3... 98.99.100.101 -1 =101! -1$
hay
$1 * \left( {2 * \left( {3 * \left( {4 * ...\left( {99 * 100} \right)...} \right)} \right)} \right)=101! -1$

#72 chanh1223

chanh1223

    Hạ sĩ

  • Thành viên
  • 75 Bài viết
  • Giới tính:Nam
  • Đến từ:Tuy Hòa, Phú Yên, Việt Nam

Đã gửi 16-03-2012 - 23:52

Bài 31:
$x^{4}+x^{3}-2x^{2}-15x-25=0$

#73 lehuong168

lehuong168

    Lính mới

  • Thành viên
  • 1 Bài viết

Đã gửi 26-03-2012 - 23:09

các anh chị ơi em có 1 bài toán cô giáo ra mà không tài nào giải nổi các anh chị giúp em với ah!:(
đề bài:
Liệt kê toàn bộ các hoán vị của tập {1,2,...,n}. Có n con bọ được bố trí rải rác ngẫu nhiên trên các nút của 1 lưới ô vuông mà mỗi cạnh ô vuông bằng 1 đơn vị. Mỗi nút của lưới ô vuông được xác định bởi cặp tọa độ nguyên (x,y). các con bọ có thể di chuyển lên, xuống, trái, phải mỗi lần 1 đơn vị tương ứng với việc thay đổi các hoành độ hay tung độ 1 hay -1 đơn vị. các con bọ di chuyển sao cho cuối cùng chúng đứng thành thẳng nằm ngang, con bọ nọ cách con bọ kia: lúc đó vị trí các con bọ là (x,y) ; (x+1,y);...(x+n-1,y) với x,y nào đó. Giá trị Z của x,y cũng như thứ tự các con bọ kia là tùy ý. Yêu cầu: Tìm số lần di chuyển ít nhất để đạt được thỏa mãn yêu cầu trên tại mỗi nút của lưới ô vuông không thể có hơn 1 con bọ tại cùng 1 thời điểm.

#74 Apollo Second

Apollo Second

    Hạ sĩ

  • Thành viên
  • 74 Bài viết

Đã gửi 11-06-2012 - 09:59

Topic này đang bị bỏ quên... Mọi người cùng thảo luận bài này.

Bài 22: Tính tích phân bất định: $$\int \dfrac{x^{4}-2x^{2}}{\left ( x^{2}sinx+2xcosx-2sinx \right )\left ( x^{2}cosx-2xsinx-2cosx \right )}$$

Anh ơi , sao nói là tích phân mà lại không có cận vậy anh !!

Này Ngốc , nếu có gì mày không thể làm được thì đó là từ bỏ ;)


#75 Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế

Đã gửi 11-06-2012 - 10:07

Anh ơi , sao nói là tích phân mà lại không có cận vậy anh !!


Tích phân bất định em nhé. Tích phân bất định là nguyên hàm đó mà. Nguyên hàm thì đương nhiên không có cận.

#76 namcpnh

namcpnh

    Red Devil

  • Hiệp sỹ
  • 1153 Bài viết
  • Giới tính:Nam
  • Đến từ:Ho Chi Minh University of Science
  • Sở thích:Abstract and Applied Analysis

Đã gửi 20-06-2012 - 10:38

Bài 31:
$x^{4}+x^{3}-2x^{2}-15x-25=0$

Tôi xin được nêu hướng giải bài này.
Từ $x^{4}+x^{3}-2x^{2}-15x-25$ ta luôn có thể phân tích thành $(x^{2}+ax+5)(x^{2}+bx-5)$.Nhân vào rồi đồng nhất hệ số ta được
$\left\{\begin{matrix} a+b=1\\ ab=-2\\ a-b=3 \end{matrix}\right.$
Từ hệ ta được a=2 và b=-1.Khi đó $x^{4}+x^{3}-2x^{2}-15x-25$=$(x^{2}+2x+5)(x^{2}-x-5)=0$.
Giải phương trình bậc 2 ta được nghiệm $x=\frac{1+\sqrt{21}}{2}$ và $x=\frac{1-\sqrt{21}}{2}$.

Bài viết đã được chỉnh sửa nội dung bởi namheo1996: 20-06-2012 - 10:39

Cùng chung sức làm chuyên đề hay cho diễn đàn tại :

Dãy số-giới hạn, Đa thức , Hình học , Phương trình hàm , PT-HPT-BPT , Số học.

Wolframalpha đây


#77 donghaidhtt

donghaidhtt

    Sĩ quan

  • Thành viên
  • 494 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Trị
  • Sở thích:Ngắm gái và ... ngắm gái! :P

Đã gửi 20-06-2012 - 18:13

Bài 18:Cho tam giác $ABC$ thỏa mãn $\tan \frac{A}{2}\tan \frac{B}{2} = \frac{1}{2}$.CMR điều kiện cần và đủ để tam giác $ABC$ vuông là
\[\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} = \frac{1}{{10}}\]

Bài này em thấy có ở báo THTT tháng 4 năm 2012 nì.

#78 namcpnh

namcpnh

    Red Devil

  • Hiệp sỹ
  • 1153 Bài viết
  • Giới tính:Nam
  • Đến từ:Ho Chi Minh University of Science
  • Sở thích:Abstract and Applied Analysis

Đã gửi 21-06-2012 - 17:15

Bài này em thấy có ở báo THTT tháng 4 năm 2012 nì.

Đúng rồi,đề bài này ở tháng 12/2011 còn bài giải thì ở tháng 4/2012.Bài này được giải như sau:
Từ đề cho ta có :$2sin\frac{A}{2}sin\frac{B}{2}=cos\frac{A}{2}cos\frac{B}{2}$ (1)

<=>$sin\frac{A}{2}sin\frac{B}{2}=cos\frac{A}{2}cos\frac{B}{2}-sin\frac{A}{2}sin\frac{B}{2}$

<=>$sin\frac{A}{2}sin\frac{B}{2}=sin\frac{C}{2}$ (vì A+B+C=180) (2)

Từ (1) và (2) suy ra:

$sinAsinB=4sin\frac{A}{2}sin\frac{B}{2}.cos\frac{A}{2}sos\frac{B}{2}=8sin^{2}\frac{C}{2}$.

Mà $cos(A+B)=2sin^{2}\frac{C}{2}-1$ nên cosAcosB=$10sin^{2}\frac{C}{2}-1$. (3)

Từ (2),(3) ta có $sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{1}{10}<=>sin^{2}\frac{C}{2}=\frac{1}{10}$

<=>cosAcosB=0, hay tam giác ABC vuông ở A hoặc B =>đpcm.

Bài này thuộc dạng bài dễ nên mình cũng được đăng tên lên báo.

Bài viết đã được chỉnh sửa nội dung bởi namheo1996: 21-06-2012 - 17:20

Cùng chung sức làm chuyên đề hay cho diễn đàn tại :

Dãy số-giới hạn, Đa thức , Hình học , Phương trình hàm , PT-HPT-BPT , Số học.

Wolframalpha đây


#79 dangerous_nicegirl

dangerous_nicegirl

    Binh nhất

  • Thành viên
  • 37 Bài viết

Đã gửi 29-10-2012 - 16:51

Thêm bài nữa.
Bài 18:Tìm a để pt:$\dfrac{x^3+1}{x\sqrt{x}}+2(a-1)\dfrac{x^2+1}{x}+4(1-a)\dfrac{x+1}{\sqrt{x}}+4a-6$ có 3 nghiệm phân biệt.

ai giải giùm em câu này?

#80 eneim

eneim

    Binh nhì

  • Thành viên
  • 19 Bài viết

Đã gửi 08-02-2013 - 09:20

ai giải giùm em câu này?


Dễ thấy nếu $x$ là nghiệm thì $x \geq 0$ và $\frac{1}{x}$ cũng là nghiệm. Nên nếu nó có 3 nghiệm $x$ phân biệt thì sẽ có 1 nghiệm là nghịch đảo của nhau và 1 nghiệm phải bằng 1.

Thay 1 vào lại phương trình để tìm a sau đó giải phương trình.

Mình nghĩ trong đầu như vậy, các bước tính toán chưa thực hiện do tạt qua nhanh và không có nhiều thời gian. Bạn có thể theo hướng này giải tiếp.

Bài viết đã được chỉnh sửa nội dung bởi eneim: 08-02-2013 - 09:22





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh