Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Có tồn tại ma trân thực A vuông cấp hai sao cho $A^{2010}=\begin{bmatrix} -2008 &2010 \\ 0& -2009 \end{bmatrix}$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 vo van duc

vo van duc

    Thiếu úy

  • Điều hành viên Đại học
  • 569 Bài viết
  • Giới tính:Nam
  • Đến từ:Học Sư phạm Toán, ĐH Sư phạm TP HCM

Đã gửi 20-01-2012 - 09:18

Câu 1: Tồn tại hay không tồn tại một ma trận vuông thực cấp 2 thỏa mãn $A^{2010}=\begin{bmatrix} -1 &0 \\ 0& -1-e \end{bmatrix}$
trong đó e là một hằng số dương.

Câu 2: Tồn tại hay không một ma trân thực A vuông cấp hai sao cho $A^{2010}=\begin{bmatrix} -2008 &2010 \\ 0& -2009 \end{bmatrix}$

Võ Văn Đức 17.gif       6.gif

 

 

 

 

 


#2 redline

redline

    Hạ sĩ

  • Thành viên
  • 70 Bài viết
  • Giới tính:Nam

Đã gửi 05-03-2012 - 22:03

Câu 1: Tồn tại hay không tồn tại một ma trận vuông thực cấp 2 thỏa mãn $A^{2010}=\begin{bmatrix} -1 &0 \\ 0& -1-e \end{bmatrix}$
trong đó e là một hằng số dương.

Câu 2: Tồn tại hay không một ma trân thực A vuông cấp hai sao cho $A^{2010}=\begin{bmatrix} -2008 &2010 \\ 0& -2009 \end{bmatrix}$


Câu 1. Gọi đa thức đặc trưng của $A$ là $p(x)$, thì $p(x)$ là đa thức bậc hai. Khi chia $x^{2010}$ cho $p(x)$ được thương $q(x)$ và dư là một đa thức bậc nhiều nhất là 1, ký hiệu đó là $ux+v$ trong đó $u$ và $v$ là các số thực.
$$x^{2010} = p(x)q(x) + (ux+v).$$
Theo Định lý Cayley-Hamilton, ta có $p(A) =0$. Nên $A^{2010} = uA+vE$, trong đó $E$ là ma trận đơn vị cấp $2$. Giả sử
$A = \begin{bmatrix} a &b \\ c& d \end{bmatrix}$.
Từ $uA + vE = \begin{bmatrix} -1 &0 \\ 0& -1-e \end{bmatrix}$
Suy ra: $ua+v = -1, ud+v = -1-e, ub = 0, uc = 0$. Từ hai phương trình đầu suy ra $u \ne 0$, nên từ hai phương trình cuối suy ra $b = c = 0$. Do đó
$A = \begin{bmatrix} a &0 \\ 0& d \end{bmatrix}$.
Nên $A^{2010} = \begin{bmatrix} a^{2010} &0 \\ 0& d^{2010} \end{bmatrix}$.
Suy ra $a^{2010} = -1$ và $b^{2010} = -1-e$, vô lý. Nên ma trận $A$ không tồn tại.

Câu 2. Chứng minh tương tự. Chỉ cần chứng minh rằng: $A = \begin{bmatrix} a &b \\ c& d \end{bmatrix}$, thì $c = 0$. Và do đó suy ra $a^{2010} = -2008$, vô lý, QED.

Bài viết đã được chỉnh sửa nội dung bởi vo van duc: 24-01-2013 - 23:45


#3 okbabi

okbabi

    Binh nhất

  • Thành viên
  • 31 Bài viết
  • Giới tính:Nam

Đã gửi 17-03-2012 - 15:58

hướng dẫn như trên đúng rồi ^^!

#4 cuong148

cuong148

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nam
  • Đến từ:ĐHSP

Đã gửi 31-01-2013 - 00:29

Câu 1: Tồn tại hay không tồn tại một ma trận vuông thực cấp 2 thỏa mãn $A^{2010}=\begin{bmatrix} -1 &0 \\ 0& -1-e \end{bmatrix}$
trong đó e là một hằng số dương.

Câu 2: Tồn tại hay không một ma trân thực A vuông cấp hai sao cho $A^{2010}=\begin{bmatrix} -2008 &2010 \\ 0& -2009 \end{bmatrix}$

Mình làm câu 2.Câu 1 có vẻ tương tự nhưng có cái e nghe vẻ trình bày phức tạp hơn. :)
Cái này chéo hóa được mà.Đâu cần dùng Caley làm gì. :)
Có 2 cái giá trị riêng là -2008 và -2009.từ đây ta tìm được vector riêng.sau đó chéo hóa bên phải bởi$ C^{-1}BC$(cái ma trận bên phải tạm gọi là B,C là ma trận tạo bởi vector riêng theo cột)
và dùng nhận xét $(C^{-1}AC)^{2010}=C^{-1}A^{2010}C$ và ta cũng có được kết quả là không tồn tại như trên. :).

Bài viết đã được chỉnh sửa nội dung bởi cuong148: 31-01-2013 - 00:30


#5 letrongvan

letrongvan

    Thượng sĩ

  • Thành viên
  • 213 Bài viết
  • Giới tính:Không khai báo

Đã gửi 28-02-2013 - 17:33

Câu 1. Gọi đa thức đặc trưng của $A$ là $p(x)$, thì $p(x)$ là đa thức bậc hai. Khi chia $x^{2010}$ cho $p(x)$ được thương $q(x)$ và dư là một đa thức bậc nhiều nhất là 1, ký hiệu đó là $ux+v$ trong đó $u$ và $v$ là các số thực.
$$x^{2010} = p(x)q(x) + (ux+v).$$
Theo Định lý Cayley-Hamilton, ta có $p(A) =0$. Nên $A^{2010} = uA+vE$, trong đó $E$ là ma trận đơn vị cấp $2$. Giả sử
$A = \begin{bmatrix} a &b \\ c& d \end{bmatrix}$.
Từ $uA + vE = \begin{bmatrix} -1 &0 \\ 0& -1-e \end{bmatrix}$
Suy ra: $ua+v = -1, ud+v = -1-e, ub = 0, uc = 0$. Từ hai phương trình đầu suy ra $u \ne 0$, nên từ hai phương trình cuối suy ra $b = c = 0$. Do đó
$A = \begin{bmatrix} a &0 \\ 0& d \end{bmatrix}$.
Nên $A^{2010} = \begin{bmatrix} a^{2010} &0 \\ 0& d^{2010} \end{bmatrix}$.
Suy ra $a^{2010} = -1$ và $b^{2010} = -1-e$, vô lý. Nên ma trận $A$ không tồn tại.

Câu 2. Chứng minh tương tự. Chỉ cần chứng minh rằng: $A = \begin{bmatrix} a &b \\ c& d \end{bmatrix}$, thì $c = 0$. Và do đó suy ra $a^{2010} = -2008$, vô lý, QED.

Cho mình hỏi nếu A là ma trận bậc 4 thì dùng caylay thế nào? Cũng có P(A)=0 nhưng phương trình caylay đó như thế nào?

Tào Tháo





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh