Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Tìm giới hạn $$\lim_{(x,y)\rightarrow (0,0)}\frac{2x}{2+3x^{2}+y^{2}}$$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 cobengocnghech

cobengocnghech

    Binh nhì

  • Thành viên
  • 12 Bài viết

Đã gửi 27-01-2012 - 17:20

Tìm giới hạn:
$\lim_{(x,y)\rightarrow (0,0)}\frac{2x}{2+3x^{2}+y^{2}}$

Bài viết đã được chỉnh sửa nội dung bởi xusinst: 29-01-2012 - 19:56
title fixed


#2 Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế

Đã gửi 17-02-2012 - 11:28

Tìm giới hạn:
$\lim_{(x,y)\rightarrow (0,0)}\frac{2x}{2+3x^{2}+y^{2}}$


Xét $M\left( {{x_0};{y_0}} \right) \to O\left( {0;0} \right)$ trên đường $y=x$, khi đó:
$$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{2x}}{{2 + 3{x^2} + {y^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{2 + 4{x^2}}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$$
Xét $M\left( {{x_0};{y_0}} \right) \to O\left( {0;0} \right)$ trên đường $y=-x$, khi đó:
$$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{2x}}{{2 + 3{x^2} + {y^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{2 + 3{x^2} + {{\left( { - x} \right)}^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{2 + 4{x^2}}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)$$
Từ $(1)$ và $(2)$ suy ra $$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{2x}}{{2 + 3{x^2} + {y^2}}} = 0$$

-------------------------------------
Có thể thay trực tiếp $\left( {x,y} \right) \to \left( {0,0} \right)$ vào biểu thức $\frac{{2x}}{{2 + 3{x^2} + {y^2}}}$ không?

#3 fghost

fghost

    Thượng sĩ

  • Thành viên
  • 227 Bài viết

Đã gửi 18-02-2012 - 10:59

Xét $M\left( {{x_0};{y_0}} \right) \to O\left( {0;0} \right)$ trên đường $y=x$, khi đó:
$$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{2x}}{{2 + 3{x^2} + {y^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{2 + 4{x^2}}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$$
Xét $M\left( {{x_0};{y_0}} \right) \to O\left( {0;0} \right)$ trên đường $y=-x$, khi đó:
$$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{2x}}{{2 + 3{x^2} + {y^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{2 + 3{x^2} + {{\left( { - x} \right)}^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{2 + 4{x^2}}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)$$
Từ $(1)$ và $(2)$ suy ra $$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{2x}}{{2 + 3{x^2} + {y^2}}} = 0$$

-------------------------------------
Có thể thay trực tiếp $\left( {x,y} \right) \to \left( {0,0} \right)$ vào biểu thức $\frac{{2x}}{{2 + 3{x^2} + {y^2}}}$ không?



Cách xét $y=x$ và $y=-x$ hình như không có hợp pháp thì phải?

Bài viết đã được chỉnh sửa nội dung bởi fghost: 18-02-2012 - 11:00


#4 Want?

Want?

    My name is Sherlock Holmes

  • Thành viên
  • 77 Bài viết
  • Giới tính:Nam
  • Đến từ:Việt Nam

Đã gửi 18-02-2012 - 14:33

Bài này bạn có thể thay trực tiếp $(x,y)\to(0,0)$ vào vì Đa thức đã xác định tại điểm này
Đây là chữ ký của tôi!!!




5 người đang xem chủ đề

0 thành viên, 5 khách, 0 thành viên ẩn danh