Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Chứng minh rằng: $x^{2}+y^{2}=1$.


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 cvp

cvp

    Sĩ quan

  • Thành viên
  • 400 Bài viết
  • Giới tính:Nam
  • Đến từ:Sky Math
  • Sở thích:Sky maths

Đã gửi 19-03-2012 - 20:12

Bài 1:
a)
Cho $x,y$ là các số thực thỏa mãn :
$x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}=1$.
Chứng minh rằng: $x^{2}+y^{2}=1$.
b)
Cho các số $x,y,z\in \mathbb{Z}$ thỏa mãn $x^{2}+y^{2}=z^{2}$
Chứng minh rằng: $xy\vdots 12$.

Bài viết đã được chỉnh sửa nội dung bởi cvp: 19-03-2012 - 20:29

Hình đã gửi


#2 yeutoan11

yeutoan11

    Sĩ quan

  • Thành viên
  • 307 Bài viết
  • Giới tính:Nam

Đã gửi 19-03-2012 - 20:39

Bài 1:
a)
Cho $x,y$ là các số thực thỏa mãn :
$x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}=1$.
Chứng minh rằng: $x^{2}+y^{2}=1$.
b)
Cho các số $x,y,z\in \mathbb{Z}$ thỏa mãn $x^{2}+y^{2}=z^{2}$
Chứng minh rằng: $xy\vdots 12$.

1) a)$x\sqrt{1-y^2}\leq \frac{x^2+1-y^2}{2};y\sqrt{1-x^2}\leq \frac{y^2+1-x^2}{2}$
Vậy $VT \leq 1$
Xét đẳng thức có ĐPCM
b) http://diendantoanho...showtopic=69658
Dựng nước lấy việc học làm đầu. Muốn thịnh trị lấy nhân tài làm gốc.
NGUYỄN HUỆ
Nguyễn Trần Huy
Tự hào là thành viên VMF




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh