Đến nội dung

Hình ảnh

Đề thi ôn tập thường xuyên của ĐHĐT


  • Please log in to reply
Chủ đề này có 3 trả lời

#1
analysis90

analysis90

    Binh nhất

  • Thành viên
  • 39 Bài viết

MATHEMATICAL OLYMPIAD STUDENT

(third-2012)

Exercise 1. For $f(x)=2(x-1)-\arctan x,x\in\mathbb{R}$.
a) Prove that $f(x)=0$ have only a root $a\in(1,\sqrt{3})$.
b) Let $\{u_{n}\}_{n=1}^{\infty}$ be a sequence defined by$\left\{\begin{matrix} u_1=\dfrac{3}{2}& \\ u_n=1+\dfrac{1}{2}\arctan x,&n\geq1 \end{matrix}\right.$.
Prove that $\{u_{n}\}_{n=1}^{\infty}$ converges to $a$.
Exercise 2. Let $f:[0,+\infty)\longrightarrow \mathbb{R}$ be a differentiable function such that $f(0)=1$. Prove that if $f'(x)\geq f(x)$ for all $x\in[0,+\infty)$, then the function $g(x)=f(x)-e^x$ is a increasing function.
Exercise 3. Let $f:[0,1]\longrightarrow \mathbb{R}$ be a integrable function such that $\int_0^1xf(x)dx=0$. Prove that
$\int_0^1f^2(x)dx\geq 4(\int_0^1f(x)dx)^2$.
Exercise 4. Let $f:\mathbb{R}\longrightarrow \mathbb{R}$ be a twice differentiable, $g:\mathbb{R}\longrightarrow \mathbb{R}^+$ be a function such that $f(x)+f''(x)=-xg(x)f'(x)$ for all $x\in\mathbb{R}$. Prove that $f(x)$ is bounded.
Exercise 5. Let $P(x)=\sum_{i=0}^{n}a_ix^i$ with $a_n>0$ be a $n$ degrees polynomial and have distinct $n$ roots. Prove that the polynomial $Q(x)=(P(x))^2-P'(x)$ only have
a) distinct $n+1$ roots if $n$ is odd.
b) distinct $n$ roots if $n$ is even.
Exercise 6. Find al function $f:\mathbb{R}\longrightarrow \mathbb{R}$ satisfies
$f(x+y)\geq f(x).f(y)\geq e^{x+y}$ for all $x,y\in \mathbb{R}$.

Bài viết đã được chỉnh sửa nội dung bởi analysis90: 30-03-2012 - 13:14


#2
khacduongpro_165

khacduongpro_165

    Thiếu úy

  • Thành viên
  • 594 Bài viết
Exercise 3. Let $f:[0,1]\longrightarrow \mathbb{R}$ be a integrable function such that $\int_0^1xf(x)dx=0$. Prove that
$\int_0^1f^2(x)dx\geq 4(\int_0^1f(x)dx)^2$.



Xét $g(x)=6x-4$ rồi xét $(f(x)+\alpha\g(x))^2\geq 0$ với $\alpha=\int_{0}^{1}f(x)dx$

Bài viết đã được chỉnh sửa nội dung bởi khacduongpro_165: 02-04-2012 - 09:00

"Phong độ là nhất thời, đẳng cấp là mãi mãi"!!!

#3
khacduongpro_165

khacduongpro_165

    Thiếu úy

  • Thành viên
  • 594 Bài viết
Exercise 6. Find al function $f:\mathbb{R}\longrightarrow \mathbb{R}$ satisfies
$f(x+y)\geq f(x).f(y)\geq e^{x+y}$ for all $x,y\in \mathbb{R}$.


Đặt $g(x)=\frac{f(x)}{e^x}$
"Phong độ là nhất thời, đẳng cấp là mãi mãi"!!!

#4
analysis90

analysis90

    Binh nhất

  • Thành viên
  • 39 Bài viết
Exercise 3. We have $\int_0^1f^2(x)dx\int_0^2(3x-2)^2dx\geq (\int_0^1f(x)(3x-2)dx)^2$.




2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh