Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Đề thi ôn tập thường xuyên của ĐHĐT


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 analysis90

analysis90

    Binh nhất

  • Thành viên
  • 39 Bài viết
  • Giới tính:Nam
  • Đến từ:dong thap

Đã gửi 30-03-2012 - 09:46

MATHEMATICAL OLYMPIAD STUDENT

(third-2012)

Exercise 1. For $f(x)=2(x-1)-\arctan x,x\in\mathbb{R}$.
a) Prove that $f(x)=0$ have only a root $a\in(1,\sqrt{3})$.
b) Let $\{u_{n}\}_{n=1}^{\infty}$ be a sequence defined by$\left\{\begin{matrix} u_1=\dfrac{3}{2}& \\ u_n=1+\dfrac{1}{2}\arctan x,&n\geq1 \end{matrix}\right.$.
Prove that $\{u_{n}\}_{n=1}^{\infty}$ converges to $a$.
Exercise 2. Let $f:[0,+\infty)\longrightarrow \mathbb{R}$ be a differentiable function such that $f(0)=1$. Prove that if $f'(x)\geq f(x)$ for all $x\in[0,+\infty)$, then the function $g(x)=f(x)-e^x$ is a increasing function.
Exercise 3. Let $f:[0,1]\longrightarrow \mathbb{R}$ be a integrable function such that $\int_0^1xf(x)dx=0$. Prove that
$\int_0^1f^2(x)dx\geq 4(\int_0^1f(x)dx)^2$.
Exercise 4. Let $f:\mathbb{R}\longrightarrow \mathbb{R}$ be a twice differentiable, $g:\mathbb{R}\longrightarrow \mathbb{R}^+$ be a function such that $f(x)+f''(x)=-xg(x)f'(x)$ for all $x\in\mathbb{R}$. Prove that $f(x)$ is bounded.
Exercise 5. Let $P(x)=\sum_{i=0}^{n}a_ix^i$ with $a_n>0$ be a $n$ degrees polynomial and have distinct $n$ roots. Prove that the polynomial $Q(x)=(P(x))^2-P'(x)$ only have
a) distinct $n+1$ roots if $n$ is odd.
b) distinct $n$ roots if $n$ is even.
Exercise 6. Find al function $f:\mathbb{R}\longrightarrow \mathbb{R}$ satisfies
$f(x+y)\geq f(x).f(y)\geq e^{x+y}$ for all $x,y\in \mathbb{R}$.

Bài viết đã được chỉnh sửa nội dung bởi analysis90: 30-03-2012 - 13:14


#2 khacduongpro_165

khacduongpro_165

    Thiếu úy

  • Thành viên
  • 594 Bài viết
  • Giới tính:Nam
  • Đến từ:HV TÀI CHÍNH

Đã gửi 01-04-2012 - 00:03

Exercise 3. Let $f:[0,1]\longrightarrow \mathbb{R}$ be a integrable function such that $\int_0^1xf(x)dx=0$. Prove that
$\int_0^1f^2(x)dx\geq 4(\int_0^1f(x)dx)^2$.



Xét $g(x)=6x-4$ rồi xét $(f(x)+\alpha\g(x))^2\geq 0$ với $\alpha=\int_{0}^{1}f(x)dx$

Bài viết đã được chỉnh sửa nội dung bởi khacduongpro_165: 02-04-2012 - 09:00

"Phong độ là nhất thời, đẳng cấp là mãi mãi"!!!

#3 khacduongpro_165

khacduongpro_165

    Thiếu úy

  • Thành viên
  • 594 Bài viết
  • Giới tính:Nam
  • Đến từ:HV TÀI CHÍNH

Đã gửi 01-04-2012 - 00:04

Exercise 6. Find al function $f:\mathbb{R}\longrightarrow \mathbb{R}$ satisfies
$f(x+y)\geq f(x).f(y)\geq e^{x+y}$ for all $x,y\in \mathbb{R}$.


Đặt $g(x)=\frac{f(x)}{e^x}$
"Phong độ là nhất thời, đẳng cấp là mãi mãi"!!!

#4 analysis90

analysis90

    Binh nhất

  • Thành viên
  • 39 Bài viết
  • Giới tính:Nam
  • Đến từ:dong thap

Đã gửi 01-04-2012 - 12:13

Exercise 3. We have $\int_0^1f^2(x)dx\int_0^2(3x-2)^2dx\geq (\int_0^1f(x)(3x-2)dx)^2$.




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh