Đến nội dung


Hình ảnh
- - - - -

$ r<\dfrac{AB.CD}{2AB+2CD}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 DTSK

DTSK

    Binh nhì

  • Thành viên
  • 19 Bài viết

Đã gửi 07-10-2005 - 14:11

Cho tứ diện ABCD. Gọi $r$ là bán kính mặt cầu nội tiếp tứ diện cmr:
$$ r<\dfrac{AB.CD}{2AB+2CD}$$


Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 05-08-2015 - 11:00


#2 PSW

PSW

    Những bài toán trong tuần

  • Thành viên
  • 488 Bài viết
  • Giới tính:Nam

Đã gửi 07-08-2015 - 11:57

Bài toán này thuộc Gameshow NHỮNG BÀI TOÁN TRONG TUẦN. Bài toán đã được công bố lại nhiều ngày nhưng chưa ai giải được. BTC đã đặt hoa hồng hi vọng  @};- cho bài toán này.

Nếu hết ngày 09/08 mà vẫn không có ai giải được hay phủ định được, BTC sẽ công bố bài toán khác, tuy nhiên hoa hồng hi vọng  @};- sẽ vẫn tồn tại cho đến khi có người giải được hay phủ định được bài toán này


1) Thể lệ
2) Danh sách các bài toán đã qua: 1-100, 101-200, 201-300, 301-400
Còn chờ gì nữa mà không tham gia!  :luoi:
 


#3 HeilHitler

HeilHitler

    Hạ sĩ

  • Thành viên
  • 65 Bài viết
  • Giới tính:Nam
  • Đến từ:Thanh Hóa
  • Sở thích:Trời làm màn gối đất làm chiên-Nhật nguyệt cùng ta một giấc yên-Đêm khuya chẳng dám dang chân duỗi-Chỉ sợ sơn hà xã tắc nghiêng.

Đã gửi 28-01-2016 - 02:30

Cho tứ diện ABCD. Gọi $r$ là bán kính mặt cầu nội tiếp tứ diện cmr:
$$ r<\dfrac{AB.CD}{2AB+2CD}$$

Gọi $h_a,h_b,...$ tương ứng là các đường cao của tứ diện hạ từ các đỉnh $A,B,..$

Gọi $I$ là tâm mặt cầu nội tiếp.
Rõ ràng $\frac{r}{h_a}=\frac{V_{IBCD}}{V_{ABCD}}$, thực hiện các tỷ số tương tự và cộng dọc ta suy ra:

$\frac{r}{h_a}+\frac{r}{h_b}+\frac{r}{h_c}+\frac{r}{h_d}=1$

$\Rightarrow \frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}+\frac{1}{h_d}=\frac{1}{r}$

Chú ý $h_a, h_b \leq AB$ và $h_c,h_d \leq CD$ nhưng không thể đồng thời xảy ra dấu bằng cả 4 BĐT, cho nên:

$\frac{1}{r}>\frac{2}{AB}+\frac{2}{CD}$.

Suy ra đpcm.


Bài viết đã được chỉnh sửa nội dung bởi HeilHitler: 28-01-2016 - 02:31





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh